Subscribe to RSS
DOI: 10.1055/s-2001-15698
Cyclophosphamid
CyclophosphamidePublication History
Publication Date:
31 December 2001 (online)

Das Zytostatikum Cyclophosphamid (Endoxan®) ist ein Vertreter der Stickstoff-Lost-Derivate. Diese Substanzklasse leitet sich von dem im ersten Weltkrieg eingesetzten Kampfgas Lost (Dichlordiethylsulfid, Senfgas oder Mustard) ab, das in erster Linie haut- und lungentoxisch wirkt. Zudem entdeckte man, dass stark proliferierendes Gewebe wie z. B. Knochenmark durch das Kampfgas in besonderem Maße geschädigt worden war. Diese Beobachtung initiierte die Suche nach weniger toxischen Derivaten des Senfgases, die als Zytostatika geeignet wären. Unter der Vielzahl der synthetisierten Verbindungen war das Cyclophosphamid der erste erfolgreiche Vertreter dieser Klasse [4].
Literatur
- 1
Boddy A V, Yule S M.
Metabolism and pharmacokinetics
of oxazaphosphorines.
Clin Pharmacokinet.
2000;
38
291-304
MissingFormLabel
- 2
Chan K K, Hong P S, Tutsch K, Trump D L.
Clinical pharmacokinetics
of cyclophosphamide and metabolites with and without SR-2508.
Cancer
Res.
1994;
54
6421-6429
MissingFormLabel
- 3
Chen T L, Passos-Coelho J L, Noe D A. et al .
Nonlinear pharmacokinetics of cyclophosphamide
in patients with metastatic breast cancer receiving high-dose chemotherapy
followed by autologous bone marrow transplantation.
Cancer
Res.
1995;
55
810-816
MissingFormLabel
- 4
Colvin O M.
An
overview of cyclophosphamide development and clinical applications.
Curr
Pharm Des.
1999;
5
555-560
MissingFormLabel
- 5 Dorr R T, Von Hoff D D. Cancer Chemotherapy
Handbook. Norwalk, USA: Appleton & Lange 2nd
ed 1994
MissingFormLabel
- 6
Engle T W, Zon G, Egan W.
31P
NMR kinetic studies of the intra- and intermolecular alkylation
chemistry of phosphoramide mustard and cognate N-phosphorylated
derivatives of N,N-bis(2-chloroethyl)amine.
J Med Chem.
1982;
25
1347-1357
MissingFormLabel
- 7
Hadidi A H, Idle J R.
Combined thin-layer chromatography-photography-densitometry
for the quantitation of cyclophosphamide and its four principal
urinary metabolites.
J Chromatogr.
1988;
427
121-130
MissingFormLabel
- 8
Joqueviel C, Martino R, Gilard V, Malet-Martino M, Canal P, Niemeyer U.
Urinary excretion of
cyclophosphamide in humans, determined by phosphorus-31 nuclear
magnetic resonance spectroscopy.
Drug Metab Dispos.
1998;
26
418-428
MissingFormLabel
- 9
Kastan M B, Schlaffer E, Russo J E, Colvin O M, Civin C I, Hilton J.
Direct demonstration
of elevated aldehyde dehydrogenase in human hematopoietic progenitor
cells.
Blood.
1990;
75
1947-1950
MissingFormLabel
- 10
Mouridsen H T, Faber O, Skovsted L.
The metabolism
of cyclophosphamide. Dose dependency and the effect of long-term treatment
with cyclophosphamide.
Cancer.
1976;
37
665-670
MissingFormLabel
- 11
Ren S, Yang J S, Kalhorn T F, Slattery J T.
Oxidation
of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide
in human liver microsomes.
Cancer Res.
1997;
57
4229-4235
MissingFormLabel
- 12
Singer N G, McCune W J.
Update on immunosuppressive
therapy.
Curr Opin Rheumatol.
1998;
10
169-173
MissingFormLabel
- 13
Sladek N E.
Metabolism
of oxazaphosphorines.
Pharmacol Ther.
1988;
37
301-355
MissingFormLabel
- 14
Sladek N E, Dockham P A, Lee M O.
Human and
mouse hepatic aldehyde dehydrogenases important in the biotransformation of
cyclophosphamide and the retinoids.
Adv Exp Med Biol.
1991;
284
97-104
MissingFormLabel
- 15
Sreerama L, Sladek N E.
Identification
and characterization of a novel class 3 aldehyde dehydrogenase overexpressed
in a human breast adenocarcinoma cell line exhibiting oxazaphosphorine-specific
acquired resistance.
Biochem Pharmacol.
1993;
45
2487-2505
MissingFormLabel
Korrespondenz
Prof. Dr. U. Jaehde
Klinische Pharmazie Pharmazeutisches Institut
der Universität Bonn
An der Immenburg 4
53121 Bonn