Semin Respir Crit Care Med 2000; 21(3): 215-222
DOI: 10.1055/s-2000-9850
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 760-0888

Mechanical Ventilation Strategies for Lung Protection

Neil R. MacIntyre
  • Duke University Medical Center, Durham, North Carolina
Further Information

Publication History

Publication Date:
03 March 2004 (online)

ABSTRACT

A large body of animal literature has shown that lungs stretched beyond their normal maximum are likely to be injured and release inflammatory cytokines into the systemic circulation. Moreover, this injury seems to be compounded if alveolar collapse also occurs. This has give rise to the notion that adequate positive end expiratory pressure (PEEP) to prevent derecruitment coupled with a tidal volume-PEEP combination that limits maximal distention to below the normal maximum is the ideal way to provide positive pressure ventilatory support. Some have argued that static pressure-volume plots to describe upper and lower inflection points are particularly important in implementing this approach. Supporting this concept is the recently completed NIH trial showing improved survival in acute respiratory distress syndrome (ARDS) when a small tidal volume strategy was used.

REFERENCES

  • 1 Dreyfuss D, Saumon G. Ventilator induced lung injury.  Am J Resp Crit Care Med . 1998;  157 294-323
  • 2 Webb H H, Tierney D F. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressure. Protection by positive end expiratory pressure.  Am Rev Respir Dis . 1974;  199 556-565
  • 3 Hernandez L A, Coker P J, May S, Thompson A L, Parker J C. Mechanical ventilation increases microvascular permeability in oleic acid injured lungs.  J Appl Physiol . 1990;  69 2057-2061
  • 4 Kolobow T, Moretti M P, Fumagalli R. Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation.  Am Rev Respir Dis . 1987;  135 312-315
  • 5 Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema.  Am Rev Respir Dis . 1988;  137 1159-1164
  • 6 Dreyfuss D, Basset G, Soler P, Saumon G. Intermittent positivepressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats.  Am Rev Respir Dis . 1985;  132 880-884
  • 7 Bowton D L, Kong D L. High tidal volume ventilation produces increased lung water in oleic acid injured rabbit lungs.  Crit Care Med . 1989;  17 908-911
  • 8 Parker J C, Townsley M I, Rippe B. Increased microvascular permeability in dog lungs due to high peak airway pressures.  J Appl Physiol . 1984;  57 1809-1816
  • 9 Parker J C, Hernandez L A, Peevy K J. Mechanisms of ventilatorinduced lung injury.  Crit Care Med . 1993;  21 131-143
  • 10 Parker J C, Hernandez L A, Longenecker G L, Peevy K, Johnson W. Lung edema caused by high peak inspiratory pressures in dogs.  Am Rev Respir Dis . 1990;  142 321-328
  • 11 Tsuno K, Prato P, Kolobow T. Acute lung injury from mechanical ventilation at moderately high airway pressures.  J Appl Physiol . 1990;  69 956-961
  • 12 Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T. Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures.  Am Rev Respir Dis . 1991;  143 1115-1120
  • 13 Dreyfuss D, Saumon G. The role of tidal volume, FRC and end inspiratory volume in the development of pulmonary edema following mechanical ventilation.  Am J Respir Crit Care Med . 1993;  148 1194-1203
  • 14 Fu Z, Costello M L, Tsukimoto K. High lung volume increases stress failure in pulmonary capillaries.  J Appl Physiol . 1992;  73 123-133
  • 15 Wyszogrodski L, Kyei-Aboagye K, Taeusch H W, Avery M E. Surfactant inactivation by hyperventilation: conservation by end expiratory pressure.  J Appl Physiol . 1975;  38 461-466
  • 16 Corbridge T C, Wood L D, Crawford G P, Chudoba J R, Yanes J, Sznalder J I. Adverse effects of large tidal volume and low PEEP in canine acid aspiration.  Am Rev Respir Dis . 1990;  142 311-315
  • 17 Muscedere J G, Mullen J B, Gan K, Slutsky A S. Tidal ventilation at low airway pressure can augment lung injury.  Am J Respir Crit Care Med . 1994;  149 1327-1334
  • 18 Ranieri V M, Eissa N T, Corbeil C. Effects of positive end expiratory pressure on alveolar recruitment and gas exchange in patients with the adult respiratory distress syndrome.  Am Rev Respir Dis . 1991;  144 544-551
  • 19 Sandhar B K, Niblett D J, Argiras E P, Dunmill M S, Sykes M K. Effect of positive end expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome.  Int Care Med . 1988;  14 538-546
  • 20 Hickling K G, Walsh J, Henderson S, Jackson R. Low mortality rate in adult respiratory distress syndrome using lowvolume, pressurelimited ventilation with permissive hypercapnia: a prospective study.  Crit Care Med . 1994;  22 1568-1578
  • 21 Amato M B, Barbas C SV, Medeivos D M. Effect of a protective ventilation strategy on mortality in ARDS.  N Engl J Med . 1998;  338 347-354
  • 22 ACCP Consensus Group. Mechanical ventilation.  Chest . 1993;  104 1833-1859
  • 23 Gattiononi L, Pesenti A, Avalli L, Ross F, Bomino M. Pressurevolume curve of total respiratory system in acute respiratory failure: computed tomographic scan study.  Am Rev Respir Dis . 1987;  136 730-736
  • 24 Gattinoni L, Pelosi P, Crotti S, Valenza F. Effects of positive end expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome.  Am J Respir Crit Care Med . 1995;  151 1807-1814
  • 25 Ranieri V M, Giuliani R, Fiore T, Dambrosio M, Milic Emili J. Volume pressure curve of the respiratory system predicts effects of PEEP in ARDS: occlusion vs constant flow technique.  Am J Respir Crit Care Med . 1994;  149 1927
  • 26 Putensen C, Bain M, Hormann C. Selecting ventilator settings according to the variables derived from the quasi static pressure volume relationship in patients with acute lung injury.  Anesth Analg . 1993;  77 436-447
  • 27 Suter P M, Fairley H B, Isenberg M D. Optimic end expiratory pressure in patients with acute pulmonary failure.  N Engl J Med . 1975;  292 284-289
  • 28 Servillo G, Beydon L, Roupie E. Pressure volume curves in acute respiratory failure: automated low flow inflation versus occlusion.  Am J Respir Crit Care Med . 1997;  155 1629-1636
  • 29 Ranieri V M, Brienza V, Santostasi S. Impairment of lung and chest wall mechanics in patients with ARDS: role of abdominal distention.  Am J Respir Crit Care Med . 1997;  156 1082-1090
  • 30 Abraham E, Yoshihara G. Cardiorespiratory effects of pressure controlled ventilation in severe respiratory failure.  Chest . 1990;  98 1445-1449
  • 31 MacIntyre N R, Gropper C, Westfall T. Combining pressure limiting and volume cycling features in a patient interactive mechanical breath.  Crit Care Med . 1994;  22 353-357
  • 32 Fiehl F, Perret C. Permissive hypercapnia-how permissive should we be?.  Am J Respir Crit Care Med . 1994;  150 1722-1737
  • 33 Kuo P H, Wu H D, Yu C J. Efficacy of tracheal gas insufflation in ARDS with permissive hypercapnia.  Am J Respir Crit Care Med . 1996;  154 612-616
  • 34 Bond D M, McAloon J, Froese A B. Substantial inflations improve respiratory compliance during high frequency oscillatory ventilation but not during large tidal volume positive pressure ventilation in rabbits.  Crit Care Med . 1994;  22 1269-1277
  • 35 Armstrong, B W, MacIntyre, N R. Pressure controlled inverse ratio ventilation that avoids air trapping in ARDS.  Crit Care Med . 1995;  23 279-285
  • 36 Tharratt R S, Allen R P, Albertson T E. Pressure controlled inverse ratio ventilation in severe adult respiratory failure.  Chest . 1988;  94 755-62
  • 37 Cole A GH, Weller S F, Sykes M K. Inverse ratio ventilation compared with PEEP in adult respiratory failure.  Int Care Med . 1984;  10 227-232
  • 38 MacIntyre N R. Intrinsic positive end expiratory pressure.  Prob Respir Care . 1991;  4 44-51
  • 39 Stock M C, Downs J B, Frolicher D A. Airway pressure release ventilation.  Crit Care Med . 1987;  15 462-466
  • 40 Stewart T E, Meade M O, Cook D J. Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for ARDS.  N Engl J Med . 1998;  338 355-361
  • 41 NIH ARDS Network. Ventilator management in ARDS: 12 ml/kg vs 6 ml/kg tidal volumes. American Thoracic Society meeting, April San Diego, CA 1999
  • 42 Chiumello D, Pristine G, Slutsky A S. Mechanical ventilation affects local and systemic cytokines ina an animal model of ARDS.  Am J Respir Crit Care Med . 1999;  160 109-116
  • 43 Servillo G, Roupie E, DeRoberses E. Effects of ventilation in ventral decubitus position on respiratory mechanics in ARDS.  Int Care Med . 1997;  23 1219-1224
  • 44 MacIntyre N R. High frequency ventilation. In: Tobin M, ed. Principles and practice of mechanical ventilation New York: McGraw-Hill 1994
  • 45 Jobe A H. Pulmonary surfactant therapy.  N Engl J Med . 1993;  328 861-868
  • 46 Hirschl RB,Pranikoff T, Gauger P. Liquid ventilation in adults, children and full term neonates.  Lancet . 1995;  346 1201-1202
  • 47 Kacmarek R. Lung protection strategies for ARDS.  Respir Care . 1998;  43 724-727
    >