Subscribe to RSS
DOI: 10.1055/s-0043-1775431
The Versatility of Nickel: Advances in C–S Bond Formation
We are grateful to the National Natural Science Foundation of China (21971174), PAPD, Cyrus Tang (Zhongying) Scholar, the Jiangsu Qing-Lan Project for Young and Middle-Aged Academic Leaders (2023) andSoochow University for financial support.

Abstract
Nickel-catalyzed carbon–sulfur (C–S) bond formation is a key process in organic synthesis, being widely applied in pharmaceuticals, agrochemicals, and materials science. This account summarizes recent advances in Ni-catalyzed C–S bond construction, covering key factors such as ligand choice, solvent, and temperature, which affect yield and selectivity. Case studies illustrate the scope of the methods in producing complex molecules. Remaining challenges include broadening the substrate scope and enhancing the selectivity for the formation of asymmetric C–S bonds. This account concludes with future directions, emphasizing the need for more efficient catalysts to expand the role of nickel in synthetic chemistry.
1 Introduction
2 Synthetic Method Development
2.1 A Novel Methodology for Thiolation and Selenylation Reactions
2.2 Nickel-Catalyzed Reductive Coupling and SN2 Reaction for Sulfides/Selenides and Sulfones
2.3 Efficient Nickel-Catalyzed Reductive Coupling for Unsymmetrical Disulfides
2.4 A Convenient Approach to Thioesters and Acyl Disulfides via Nickel-Catalyzed Reduction
2.5 Ligand-Controlled Nickel-Catalyzed Access to Disulfides from Dithiosulfonates and Alkyl Halides
3 Conclusion and Outlook
Key words
cross-coupling reaction - nickel-mediated transformations - thiolation - sustainable bond-forming strategies - C–S linkagePublication History
Received: 11 November 2024
Accepted after revision: 09 December 2024
Article published online:
02 September 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Beccalli EM, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007; 107: 5318
- 2 Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
- 3 Zalatan DN, Du Bois J. Metal-Catalyzed Oxidations of C–H to C–N Bonds . In C-H Activation, Vol. 292. Yu JQ, Shi Z. Topics in Current Chemistry; Springer; Berlin/Heidelberg: 2010: 347-378
- 4 Dzudza A, Marks TJ. Chem. Eur. J. 2010; 16: 3403
- 5 Jiang C.-S, Müller WE, Schröder HC, Guo Y.-W. Chem. Rev. 2012; 112: 2179
- 6 Tan RX, Jensen PR, Williams PG, Fenical W. J. Nat. Prod. 2004; 67: 1374
- 7 Hogg PJ. Nat. Rev. Cancer 2013; 13: 425
- 8 Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. J. Controlled Release 2011; 152: 2
- 9 Mays JR, Restituyo JA, Katzenberger RJ, Wassarman DA, Rajski SR. Tetrahedron Lett. 2007; 48: 4579
- 10 Arisawa M. J. Am. Chem. Soc. 2003; 125: 6624
- 11 Li C, Belkin D, Li Y, Yan P, Hu M, Ge N, Jiang H, Montgomery E, Lin P, Wang Z. Nat. Commun. 2018; 9: 2385
- 12 Wu Z, Pratt DA. J. Am. Chem. Soc. 2020; 142: 10284
- 13 Wu Z, Pratt DA. Angew. Chem. Int. Ed. 2021; 133: 15726
- 14 Chen S, Cao S, Liu C, Wang B, Ren X, Huang H, Peng Z, Wang X. Org. Lett. 2021; 23: 7428
- 15 Song C. Catal. Today 2003; 86: 211
- 16 Dunleavy JK. Platinum Met. Rev. 2006; 50: 110
- 17 Ager DJ. Chem. Soc. Rev. 1982; 11: 493
- 18 Liu H, Jiang X. Chem. Asian J. 2013; 8: 2546
- 19 Denes F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
- 20 Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
- 21 Fernández-Rodríguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
- 22 Arisawa M, Suzuki T, Ishikawa T, Yamaguchi M. J. Am. Chem. Soc. 2008; 130: 12214
- 23 Jean M, Renault J, van de Weghe P, Asao N. Tetrahedron Lett. 2010; 51: 378
- 24 Das R, Chakraborty D. Tetrahedron Lett. 2012; 53: 7023
- 25 Taniguchi N. J. Org. Chem. 2004; 69: 6904
- 26 Xu X.-B, Liu J, Zhang J.-J, Wang Y.-W, Peng Y. Org. Lett. 2013; 15: 550
- 27a Park N, Park K, Jang M, Lee S. J. Org. Chem. 2011; 76: 4371
- 27b Wu Y, Ding H, Zhao M, Ni Z.-H, Cao J.-P. Green Chem. 2020; 22: 4906
- 28 Jiang Y, Qin Y, Xie S, Zhang X, Dong J, Ma D. Org. Lett. 2009; 11: 5250
- 29 Qiao Z, Liu H, Xiao X, Fu Y, Wei J, Li Y, Jiang X. Org. Lett. 2013; 15: 2594
- 30 Wang X, Dai Y, Gong H. Nickel-Catalyzed Reductive Couplings. In Ni- and Fe-Based Cross-Coupling Reactions. Correa A. Topics in Current Chemistry Collections; Springer; Cham: 2017: 61-89
- 31 Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
- 32 Xie P, Wang J, Liu Y, Fan J, Wo X, Fu W, Sun Z, Loh T.-P. Nat. Commun. 2018; 9: 1321
- 33 Kim CU, McGee LR, Krawczyk SH, Harwood E, Harada Y, Swaminathan S, Bischofberger N, Chen MS, Cherrington JM, Xiong SF. J. Med. Chem. 1996; 39: 3431
- 34 Zhang Q, Dong D, Zi W. J. Am. Chem. Soc. 2020; 142: 15860
- 35 Li MM, Cheng L, Xiao LJ, Xie JH, Zhou QL. Angew. Chem. Int. Ed. 2021; 60: 2948
- 36 Brouwer C, Rahaman R, He C. Synlett 2007; 1785
- 37 Yang X.-H, Davison RT, Nie S.-Z, Cruz FA, McGinnis TM, Dong VM. J. Am. Chem. Soc. 2019; 141: 3006
- 38 Nie S, Lu A, Kuker EL, Dong VM. J. Am. Chem. Soc. 2021; 143: 6176
- 39 Fang Y, Rogge T, Ackermann L, Wang S.-Y, Ji S.-J. Nat. Commun. 2018; 9: 2240
- 40 Wang F, Chen Y, Rao W, Ackermann L, Wang S.-Y. Nat. Commun. 2022; 13: 2588
- 41 Cao J.-M, Zhu W.-C, Liu X.-Y, Rao W, Shen S.-S, Sheng D.-p, Wang S.-Y. Org. Lett. 2023; 25: 9207
- 42 Lu S, Fan S.-B, Yang B, Li Y.-X, Meng J.-M, Wu L, Li P, Zhang K, Zhang M.-J, Fu Y. Nat. Methods 2015; 12: 329
- 43 Chankhamjon P, Boettger-Schmidt D, Scherlach K, Urbansky B, Lackner G, Kalb D, Dahse HM, Hoffmeister D, Hertweck C. Angew. Chem. Int. Ed. 2014; 126: 13627
- 44 Alegre-Cebollada J, Kosuri P, Rivas-Pardo JA, Fernández JM. Nat. Chem. 2011; 3: 882
- 45 Gongora-Benitez M, Tulla-Puche J, Albericio F. Chem. Rev. 2014; 114: 901
- 46 Ande da Moura F, Queiroz de Andrade K, Celia Farias dos Santos J, Oliveira Fonseca Goulart M. Curr. Top. Med. Chem. 2015; 15: 458
- 47 Silva F, Khokhar SS, Williams DM, Saunders R, Evans GJ, Graz M, Wirth T. Angew. Chem. Int. Ed. 2018; 57: 12290
- 48 Smith R, Zeng X, Müller-Bunz H, Zhu X. Tetrahedron Lett. 2013; 54: 5348
- 49 Harusawa S, Yoshida K, Kojima C, Araki L, Kurihara T. Tetrahedron 2004; 60: 11911
- 50 Sun Q, Cai S, Peterson BR. J. Am. Chem. Soc. 2008; 130: 10064
- 51 Park C.-M, Johnson BA, Duan J, Park J.-J, Day JJ, Gang D, Qian W.-J, Xian M. Org. Lett. 2016; 18: 904
- 52 Wang W, Lin Y, Ma Y, Tung CH, Xu Z. Org. Lett. 2018; 20: 3829
- 53 Zou J, Chen J, Shi T, Hou Y, Cao F, Wang Y, Wang X, Jia Z, Zhao Q, Wang Z. ACS Catal. 2019; 9: 11426
- 54 Xiao X, Xue J, Jiang X. Nat. Chem. 2018; 9: 2191
- 55 Xue J, Jiang X. Nat. Chem. 2020; 11: 4170
- 56 Zhao C, Jia X, Wang X, Gong H. J. Am. Chem. Soc. 2014; 136: 17645
- 57 Wang X, Ma G, Peng Y, Pitsch CE, Moll BJ, Ly TD, Wang X, Gong H. J. Am. Chem. Soc. 2018; 140: 14490
- 58 Ye Y, Chen H, Sessler JL, Gong H. J. Am. Chem. Soc. 2018; 141: 820
- 59 Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
- 60 Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Cell Metab. 2015; 21: 805
- 61 Lou J, Wang Q, Wu P, Wang H, Zhou YG, Yu Z. Chem. Soc. Rev. 2020; 49: 4307
- 62 Bailey TS, Zakharov LN, Pluth MD. J. Am. Chem. Soc. 2014; 136: 10573
- 63 Iimura S, Manabe K, Kobayashi S. Chem. Commun. 2002; 94
- 64 Sawada N, Itoh T, Yasuda N. Tetrahedron Lett. 2006; 47: 6595
- 65 Burhardt MN, Ahlburg A, Skrydstrup T. J. Org. Chem. 2014; 79: 11830
- 66 Bogonda G, Patil DV, Kim HY, Oh K. Org. Lett. 2019; 21: 3774
- 67a Zhang J, Studer A. Nat. Chem. 2022; 13: 3886
- 67b Tang H, Zhang M, Luo P, Ravelli D, Wu J. J. Am. Chem. Soc. 2023; 145: 5846
- 68 Wommack AJ, Ziarek JJ, Tomaras J, Chileveru HR, Zhang Y, Wagner G, Nolan EM. J. Am. Chem. Soc. 2014; 136: 13494
- 69 Lao T, Chen J, Zhou X, Zhang Z, Cao G, Su Z, Yu Y, Cao H. Chem. Commun. 2023; 59: 458
- 70 Li J, Rao W, Wang S.-Y, Ji S.-J. J. Org. Chem. 2019; 84: 11542
- 71 Chen W, Liu XY, Sheng D, Jiang YF, Rao W, Shen S.-S, Yang Z.-Y, Wang S.-Y. Org. Chem. Front. 2024; 11: 830