RSS-Feed abonnieren
DOI: 10.1055/s-0043-1775431
The Versatility of Nickel: Advances in C–S Bond Formation
Autoren
We are grateful to the National Natural Science Foundation of China (21971174), PAPD, Cyrus Tang (Zhongying) Scholar, the Jiangsu Qing-Lan Project for Young and Middle-Aged Academic Leaders (2023) andSoochow University for financial support.

Abstract
Nickel-catalyzed carbon–sulfur (C–S) bond formation is a key process in organic synthesis, being widely applied in pharmaceuticals, agrochemicals, and materials science. This account summarizes recent advances in Ni-catalyzed C–S bond construction, covering key factors such as ligand choice, solvent, and temperature, which affect yield and selectivity. Case studies illustrate the scope of the methods in producing complex molecules. Remaining challenges include broadening the substrate scope and enhancing the selectivity for the formation of asymmetric C–S bonds. This account concludes with future directions, emphasizing the need for more efficient catalysts to expand the role of nickel in synthetic chemistry.
Key words
cross-coupling reaction - nickel-mediated transformations - thiolation - sustainable bond-forming strategies - C–S linkagePublikationsverlauf
Eingereicht: 11. November 2024
Angenommen nach Revision: 09. Dezember 2024
Artikel online veröffentlicht:
02. September 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Beccalli EM, Broggini G, Martinelli M, Sottocornola S. Chem Rev 2007; 107: 5318
- 2 Monnier F, Taillefer M. Angew Chem Int Ed 2009; 48: 6954
- 3 Zalatan DN, Du Bois J. Metal-Catalyzed Oxidations of C–H to C–N Bonds . In C-H Activation, Vol. 292. Yu JQ, Shi Z. Topics in Current Chemistry; Springer; Berlin/Heidelberg: 2010: 347-378
- 4 Dzudza A, Marks TJ. Chem Eur J 2010; 16: 3403
- 5 Jiang C.-S, Müller WE, Schröder HC, Guo Y.-W. Chem Rev 2012; 112: 2179
- 6 Tan RX, Jensen PR, Williams PG, Fenical W. J Nat Prod 2004; 67: 1374
- 7 Hogg PJ. Nat Rev Cancer 2013; 13: 425
- 8 Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. J Controlled Release 2011; 152: 2
- 9 Mays JR, Restituyo JA, Katzenberger RJ, Wassarman DA, Rajski SR. Tetrahedron Lett 2007; 48: 4579
- 10 Arisawa M. J Am Chem Soc 2003; 125: 6624
- 11 Li C, Belkin D, Li Y, Yan P, Hu M, Ge N, Jiang H, Montgomery E, Lin P, Wang Z. Nat Commun 2018; 9: 2385
- 12 Wu Z, Pratt DA. J Am Chem Soc 2020; 142: 10284
- 13 Wu Z, Pratt DA. Angew Chem Int Ed 2021; 133: 15726
- 14 Chen S, Cao S, Liu C, Wang B, Ren X, Huang H, Peng Z, Wang X. Org Lett 2021; 23: 7428
- 15 Song C. Catal Today 2003; 86: 211
- 16 Dunleavy JK. Platinum Met Rev 2006; 50: 110
- 17 Ager DJ. Chem Soc Rev 1982; 11: 493
- 18 Liu H, Jiang X. Chem Asian J 2013; 8: 2546
- 19 Denes F, Pichowicz M, Povie G, Renaud P. Chem Rev 2014; 114: 2587
- 20 Beletskaya IP, Ananikov VP. Chem Rev 2011; 111: 1596
- 21 Fernández-Rodríguez MA, Shen Q, Hartwig JF. J Am Chem Soc 2006; 128: 2180
- 22 Arisawa M, Suzuki T, Ishikawa T, Yamaguchi M. J Am Chem Soc 2008; 130: 12214
- 23 Jean M, Renault J, van de Weghe P, Asao N. Tetrahedron Lett 2010; 51: 378
- 24 Das R, Chakraborty D. Tetrahedron Lett 2012; 53: 7023
- 25 Taniguchi N. J Org Chem 2004; 69: 6904
- 26 Xu X.-B, Liu J, Zhang J.-J, Wang Y.-W, Peng Y. Org Lett 2013; 15: 550
- 27a Park N, Park K, Jang M, Lee S. J Org Chem 2011; 76: 4371
- 27b Wu Y, Ding H, Zhao M, Ni Z.-H, Cao J.-P. Green Chem 2020; 22: 4906
- 28 Jiang Y, Qin Y, Xie S, Zhang X, Dong J, Ma D. Org Lett 2009; 11: 5250
- 29 Qiao Z, Liu H, Xiao X, Fu Y, Wei J, Li Y, Jiang X. Org Lett 2013; 15: 2594
- 30 Wang X, Dai Y, Gong H. Nickel-Catalyzed Reductive Couplings. In Ni- and Fe-Based Cross-Coupling Reactions. Correa A. Topics in Current Chemistry Collections; Springer; Cham: 2017: 61-89
- 31 Gu J, Wang X, Xue W, Gong H. Org Chem Front 2015; 2: 1411
- 32 Xie P, Wang J, Liu Y, Fan J, Wo X, Fu W, Sun Z, Loh T.-P. Nat Commun 2018; 9: 1321
- 33 Kim CU, McGee LR, Krawczyk SH, Harwood E, Harada Y, Swaminathan S, Bischofberger N, Chen MS, Cherrington JM, Xiong SF. J Med Chem 1996; 39: 3431
- 34 Zhang Q, Dong D, Zi W. J Am Chem Soc 2020; 142: 15860
- 35 Li MM, Cheng L, Xiao LJ, Xie JH, Zhou QL. Angew Chem Int Ed 2021; 60: 2948
- 36 Brouwer C, Rahaman R, He C. Synlett 2007; 1785
- 37 Yang X.-H, Davison RT, Nie S.-Z, Cruz FA, McGinnis TM, Dong VM. J Am Chem Soc 2019; 141: 3006
- 38 Nie S, Lu A, Kuker EL, Dong VM. J Am Chem Soc 2021; 143: 6176
- 39 Fang Y, Rogge T, Ackermann L, Wang S.-Y, Ji S.-J. Nat Commun 2018; 9: 2240
- 40 Wang F, Chen Y, Rao W, Ackermann L, Wang S.-Y. Nat Commun 2022; 13: 2588
- 41 Cao J.-M, Zhu W.-C, Liu X.-Y, Rao W, Shen S.-S, Sheng D.-p, Wang S.-Y. Org Lett 2023; 25: 9207
- 42 Lu S, Fan S.-B, Yang B, Li Y.-X, Meng J.-M, Wu L, Li P, Zhang K, Zhang M.-J, Fu Y. Nat Methods 2015; 12: 329
- 43 Chankhamjon P, Boettger-Schmidt D, Scherlach K, Urbansky B, Lackner G, Kalb D, Dahse HM, Hoffmeister D, Hertweck C. Angew Chem Int Ed 2014; 126: 13627
- 44 Alegre-Cebollada J, Kosuri P, Rivas-Pardo JA, Fernández JM. Nat Chem 2011; 3: 882
- 45 Gongora-Benitez M, Tulla-Puche J, Albericio F. Chem Rev 2014; 114: 901
- 46 Ande da Moura F, Queiroz de Andrade K, Celia Farias dos Santos J, Oliveira Fonseca Goulart M. Curr Top Med Chem 2015; 15: 458
- 47 Silva F, Khokhar SS, Williams DM, Saunders R, Evans GJ, Graz M, Wirth T. Angew Chem Int Ed 2018; 57: 12290
- 48 Smith R, Zeng X, Müller-Bunz H, Zhu X. Tetrahedron Lett 2013; 54: 5348
- 49 Harusawa S, Yoshida K, Kojima C, Araki L, Kurihara T. Tetrahedron 2004; 60: 11911
- 50 Sun Q, Cai S, Peterson BR. J Am Chem Soc 2008; 130: 10064
- 51 Park C.-M, Johnson BA, Duan J, Park J.-J, Day JJ, Gang D, Qian W.-J, Xian M. Org Lett 2016; 18: 904
- 52 Wang W, Lin Y, Ma Y, Tung CH, Xu Z. Org Lett 2018; 20: 3829
- 53 Zou J, Chen J, Shi T, Hou Y, Cao F, Wang Y, Wang X, Jia Z, Zhao Q, Wang Z. ACS Catal 2019; 9: 11426
- 54 Xiao X, Xue J, Jiang X. Nat Chem 2018; 9: 2191
- 55 Xue J, Jiang X. Nat Chem 2020; 11: 4170
- 56 Zhao C, Jia X, Wang X, Gong H. J Am Chem Soc 2014; 136: 17645
- 57 Wang X, Ma G, Peng Y, Pitsch CE, Moll BJ, Ly TD, Wang X, Gong H. J Am Chem Soc 2018; 140: 14490
- 58 Ye Y, Chen H, Sessler JL, Gong H. J Am Chem Soc 2018; 141: 820
- 59 Ilardi EA, Vitaku E, Njardarson JT. J Med Chem 2014; 57: 2832
- 60 Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Cell Metab 2015; 21: 805
- 61 Lou J, Wang Q, Wu P, Wang H, Zhou YG, Yu Z. Chem Soc Rev 2020; 49: 4307
- 62 Bailey TS, Zakharov LN, Pluth MD. J Am Chem Soc 2014; 136: 10573
- 63 Iimura S, Manabe K, Kobayashi S. Chem Commun 2002; 94
- 64 Sawada N, Itoh T, Yasuda N. Tetrahedron Lett 2006; 47: 6595
- 65 Burhardt MN, Ahlburg A, Skrydstrup T. J Org Chem 2014; 79: 11830
- 66 Bogonda G, Patil DV, Kim HY, Oh K. Org Lett 2019; 21: 3774
- 67a Zhang J, Studer A. Nat Chem 2022; 13: 3886
- 67b Tang H, Zhang M, Luo P, Ravelli D, Wu J. J Am Chem Soc 2023; 145: 5846
- 68 Wommack AJ, Ziarek JJ, Tomaras J, Chileveru HR, Zhang Y, Wagner G, Nolan EM. J Am Chem Soc 2014; 136: 13494
- 69 Lao T, Chen J, Zhou X, Zhang Z, Cao G, Su Z, Yu Y, Cao H. Chem Commun 2023; 59: 458
- 70 Li J, Rao W, Wang S.-Y, Ji S.-J. J Org Chem 2019; 84: 11542
- 71 Chen W, Liu XY, Sheng D, Jiang YF, Rao W, Shen S.-S, Yang Z.-Y, Wang S.-Y. Org Chem Front 2024; 11: 830