Klin Monbl Augenheilkd 2018; 235(03): 281-289
DOI: 10.1055/s-0043-123072
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Überblick über die kongenitale stationäre Nachtblindheit mit überwiegend normalem Fundus

Overview of Congenital Stationary Night Blindness with Predominantly Normal Fundus Appearance
Christina Zeitz
1   Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
,
Christoph Friedburg
2   Klinik und Poliklinik für Augenheilkunde, Justus-Liebig-Universität, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
,
Markus N. Preising
2   Klinik und Poliklinik für Augenheilkunde, Justus-Liebig-Universität, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
,
Birgit Lorenz
2   Klinik und Poliklinik für Augenheilkunde, Justus-Liebig-Universität, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
› Author Affiliations
Further Information

Publication History

eingereicht 27 June 2017

akzeptiert 09 November 2017

Publication Date:
01 February 2018 (online)

Zusammenfassung

Kongenitale stationäre Nachtblindheit (Englisch: congenital stationary night blindness, CSNB) bezeichnet eine klinisch und genetisch unterscheidbare Gruppe von nicht progressiven Netzhauterkrankungen, die kaum Fundusauffälligkeiten zeigt. Die Vererbung kann autosomal-dominant (adCSNB), autosomal-rezessiv (arCSNB) oder X-chromosomal (XLCSNB) sein. Weitere klinische Merkmale können Myopie, Hyperopie, Strabismus, Nystagmus und reduzierter Visus sein. Mittels Elektroretinografie kann eine Riggs- und eine Schubert-Bornschein-Form unterschieden werden. Während die Riggs-Form eine Fehlfunktion der Stäbchen selbst aufweist, zeigen Patienten mit der weitaus häufigeren Schubert-Bornschein-Form eine Signalübertragungsstörung zwischen den Photorezeptoren und nachgeschalteten Bipolarzellen. Die Schubert-Bornschein-Form der CSNB lässt sich anhand des Elektroretinogramms (ERG) noch weiter in eine inkomplette (Englisch: incomplete, icCSNB) und komplette Form (Englisch: complete, cCSNB) einteilen. Während es sich bei der cCSNB um eine Fehlfunktion des ON-Signalwegs handelt, sind bei der icCSNB sowohl der ON- als auch der OFF-Signalweg und damit meist auch die Sehschärfe betroffen. Mittels klassischer Kopplungsanalyse, Kandidatengenanalyse und seit Neuerem Hochdurchsatzsequenzierung konnten bisher Mutationen in 13 verschiedenen Genen mit dieser Erkrankung assoziiert werden. Durch Studien an Zelllinien oder Tiermodellen konnte gezeigt werden, dass der Phänotyp der Patienten mit der Expression, Proteinlokalisation und Funktion der entsprechenden Moleküle korreliert: Gene, die bei Patienten mit der Riggs-Form der CSNB mutiert sind, haben eine bedeutende Rolle in der Phototransduktionskaskade der Stäbchen. Gene, die bei Patienten mit der icCSNB mutiert sind, kodieren für Proteine, die für die Freisetzung des Neurotransmitters Glutamat am synaptischen Spalt der Photorezeptoren verantwortlich sind. Gene, die bei Patienten mit der cCSNB mutiert sind, kodieren für Proteine, die für die Aufnahme des Glutamats und Weiterleitung des Signals an den ON-Bipolarzellen verantwortlich sind. Erste Therapieversuche im Tiermodell zeigen, dass die CSNB mittels eines gentherapeutischen Ansatzes geheilt werden könnte. Die CSNB betreffende Studien sind einerseits wichtig für eine genaue Diagnose für den Patienten, andererseits helfen sie bei der Entschlüsselung der Moleküle, die für die Signalübertragung zwischen Photorezeptoren und Bipolarzellen eine Rolle spielen, ein bislang wenig erforschtes Gebiet.

Abstract

Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous group of non-progressive retinal disorder with largely normal fundus appearance. The mode of inheritance can be autosomal dominant (adCSNB), autosomal recessive (arCSNB) or X-chromosomal (XLCSNB). Additional ocular signs can be myopia, hyperopia, strabismus, nystagmus and reduced visual acuity. The Riggs and Schubert-Bornschein form of CSNB can be discriminated by electroretinography. While the Riggs form represents a dysfunction of the rods, a signal transmission defect from photoreceptors to bipolar cell is described in patients with the more frequently occurring Schubert-Bornschein form. The Schubert-Bornschein form can be further divided into incomplete (icCSNB) and complete (cCSNB) showing different electroretinograms (ERGs). While patients with cCSNB show a dysfunction of the ON-signaling pathway, patients with icCSNB show a dysfunction of the ON- and OFF-signaling pathways, affecting visual acuity as well. Using classical linkage, candidate gene analyses and more recent next-generation sequencing approaches, to date, mutations in 13 different genes have been associated with this disease. In vitro and in vivo models showed a correlation of the phenotype of patients with the expression, protein localization and function of the respective molecules: genes, mutated in patients with the Riggs form of CSNB have an important role in the rod phototransduction cascade. Genes mutated in patients with icCSNB, code for proteins important for glutamate neurotransmitter release at the synaptic cleft of the photoreceptors. Genes mutated in patients with cCSNB, code for proteins important for glutamate uptake and further signal transmission to the ON-bipolar cells. Preliminary in vivo studies showed that CSNB may be cured by gene therapy. These studies concerning CSNB are important for the precise diagnosis of patients with this disease, but are also helpful in deciphering key molecules essential for signal transmission from photoreceptors to bipolar cells. So far, it is a poorly understood field.

 
  • Literatur

  • 1 Dryja TP, Berson EL, Rao VR. et al. Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nat Genet 1993; 4: 280-283
  • 2 Traboulsi EI, Leroy BP, Zeitz C. Congenital stationary Night Blindness. In: Traboulsi EI. ed. Genetic Diseases of the Eye. 2nd ed.. (Oxford Monographs on Medical Genetics; ). Oxford: Oxford University Press; 2012: 476-483
  • 3 Cammack J, Whight J, Cross V. et al. Psychophysical measures of visual function and everyday perceptual experience in a case of congenital stationary night blindness. Clin Ophthalmol 2016; 10: 1593-1606
  • 4 Dry KL, Van Dorp DB, Aldred MA. et al. Linkage analysis in a family with complete type congenital stationary night blindness with and without myopia. Clin Genet 1993; 43: 250-254
  • 5 Heon E, Musarella MA. Congenital stationary Night Blindness: a critical Review for molecular Approaches. In: Wright AF, Jay B. eds. Molecular Genetics of inherited Eye Disorders. Chur: Harwood Academic; 1994: 277-301
  • 6 Morton AS. Two cases of hereditary congenital night-blindness without visible fundus change. Trans Ophthal Soc UK 1893; 13: 147-150
  • 7 Leroy BP, Budde BS, Wittmer M. et al. A common NYX mutation in Flemish patients with X linked CSNB. Br J Ophthalmol 2009; 93: 692-696
  • 8 Oguchi C. Über die eigenartige Hemeralopie mit diffuser weissgraulicher Verfärbung des Augenhintergrundes. Graefes Arch Clin Exp Ophthalmol 1912; 81: 109-111
  • 9 Lauber H. Die sogenannte Retinitis punctata albescens. Klin Monatsbl Augenheilkd 1910; 48: 133-148
  • 10 Schubert G, Bornschein H. Analysis of the human electroretinogram. Ophthalmologica 1952; 123: 396-413
  • 11 Miyake Y, Yagasaki K, Horiguchi M. et al. Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol 1986; 104: 1013-1020
  • 12 Miyake Y, Yagasaki K, Horiguchi M. et al. On- and off-responses in photopic electroretinogram in complete and incomplete types of congenital stationary night blindness. Jpn J Ophthalmol 1987; 31: 81-87
  • 13 Kamiyama M, Yamamoto S, Nitta K. et al. Undetectable S cone electroretinogram b-wave in complete congenital stationary night blindness. Br J Ophthalmol 1996; 80: 637-639
  • 14 Sergouniotis PI, Robson AG, Li Z. et al. A phenotypic study of congenital stationary night blindness (CSNB) associated with mutations in the GRM6 gene. Acta Ophthalmol 2011; 90: e192-e197
  • 15 Bijveld MM, Florijn RJ, Bergen AA. et al. Genotype and phenotype of 101 Dutch patients with congenital stationary night blindness. Ophthalmology 2013; 120: 2072-2081
  • 16 Zeitz C, Robson AG, Audo I. Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res 2015; 45C: 58-110
  • 17 Audo I, Robson AG, Holder GE. et al. The negative ERG: clinical phenotypes and disease mechanisms of inner retinal dysfunction. Surv Ophthalmol 2008; 53: 16-40
  • 18 Aldahmesh MA, Al-Owain M, Alqahtani F. et al. A null mutation in CABP4 causes Leberʼs congenital amaurosis-like phenotype. Mol Vis 2010; 16: 207-212
  • 19 Hauke J, Schild A, Neugebauer A. et al. A novel large in-frame deletion within the CACNA1F gene associates with a cone-rod dystrophy 3-like phenotype. PLoS One 2013; 8: e76414
  • 20 Huang L, Zhang Q, Li S. et al. Exome sequencing of 47 Chinese families with cone-rod dystrophy: mutations in 25 known causative genes. PLoS One 2013; 8: e65546
  • 21 Jalkanen R, Mantyjarvi M, Tobias R. et al. X linked cone-rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene. J Med Genet 2006; 43: 699-704
  • 22 Nakamura M, Ito S, Terasaki H. et al. Incomplete congenital stationary night blindness associated with symmetrical retinal atrophy. Am J Ophthalmol 2002; 134: 463-465
  • 23 Nakamura M, Ito S, Piao CH. et al. Retinal and optic disc atrophy associated with a CACNA1F mutation in a Japanese family. Arch Ophthalmol 2003; 121: 1028-1033
  • 24 Miyake Y. [Establishment of the concept of new clinical entities–complete and incomplete form of congenital stationary night blindness]. Nihon Ganka Gakkai Zasshi 2002; 106: 737-755
  • 25 Riggs LA. Electroretinography in cases of night blindness. Am J Ophthalmol 1954; 38: 70-78
  • 26 Riazuddin SA, Shahzadi A, Zeitz C. et al. A mutation in SLC24A1 implicated in autosomal-recessive congenital stationary night blindness. Am J Hum Genet 2010; 87: 523-531
  • 27 Neuillé M, Malaichamy S, Vadalà M. et al. Next-generation sequencing confirms the implication of SLC24A1 in autosomal-recessive congenital stationary night blindness. Clin Genet 2016; 89: 690-699
  • 28 Rufiange M, Dassa J, Dembinska O. et al. The photopic ERG luminance-response function (photopic hill): method of analysis and clinical application. Vision Res 2003; 43: 1405-1412
  • 29 Wali N, Leguire LE. The photopic hill: a new phenomenon of the light adapted electroretinogram. Doc Ophthalmol 1992; 80: 335-345
  • 30 Ueno S, Kondo M, Niwa Y. et al. Luminance dependence of neural components that underlies the primate photopic electroretinogram. Invest Ophthalmol Vis Sci 2004; 45: 1033-1040
  • 31 Szabo V, Kreienkamp HJ, Rosenberg T. et al. p.Gln200Glu, a putative constitutively active mutant of rod alpha-transducin (GNAT1) in autosomal dominant congenital stationary night blindness. Hum Mutat 2007; 28: 741-742
  • 32 Vincent A, Audo I, Tavares E. et al. Biallelic mutations in GNB3 cause a unique form of autosomal-recessive congenital stationary night blindness. Am J Hum Genet 2016; 98: 1011-1019
  • 33 Arno G, Holder GE, Chakarova C. et al. Recessive retinopathy consequent on mutant G-protein beta subunit 3 (GNB3). JAMA Ophthalmol 2016; 134: 924-927
  • 34 Michalakis S, Shaltiel L, Sothilingam V. et al. Mosaic synaptopathy and functional defects in Cav1.4 heterozygous mice and human carriers of CSNB2. Hum Mol Genet 2014; 23: 1538-1550
  • 35 Dhingra A, Ramakrishnan H, Neinstein A. et al. Gbeta3 is required for normal light ON responses and synaptic maintenance. J Neurosci 2012; 32: 11343-11355
  • 36 Ritchey ER, Bongini RE, Code KA. et al. The pattern of expression of guanine nucleotide-binding protein beta3 in the retina is conserved across vertebrate species. Neuroscience 2010; 169: 1376-1391
  • 37 Peng YW, Robishaw JD, Levine MA. et al. Retinal rods and cones have distinct G protein beta and gamma subunits. Proc Natl Acad Sci U S A 1992; 89: 10882-10886
  • 38 Lee RH, Lieberman BS, Yamane HK. et al. A third form of the G protein beta subunit. 1. Immunochemical identification and localization to cone photoreceptors. J Biol Chem 1992; 267: 24776-24781
  • 39 Gregg RG, Kamermans M, Klooster J. et al. Nyctalopin expression in retinal bipolar cells restores visual function in a mouse model of complete X-linked congenital stationary night blindness. J Neurophysiol 2007; 98: 3023-3033
  • 40 Gregg RG, Mukhopadhyay S, Candille SI. et al. Identification of the gene and the mutation responsible for the mouse nob phenotype. Invest Ophthalmol Vis Sci 2003; 44: 378-384
  • 41 Koike C, Obara T, Uriu Y. et al. TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proc Natl Acad Sci U S A 2010; 107: 332-337
  • 42 Masu M, Iwakabe H, Tagawa Y. et al. Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 1995; 80: 757-765
  • 43 Peachey NS, Ray TA, Florijn R. et al. GPR179 is required for depolarizing bipolar cell function and is mutated in autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 2012; 90: 331-339
  • 44 Neuillé M, El Shamieh S, Orhan E. et al. Lrit3 deficient mouse (nob6): a novel model of complete congenital stationary night blindness (cCSNB). PLoS One 2014; 9: e90342
  • 45 Scalabrino ML, Boye SL, Fransen KM. et al. Intravitreal delivery of a novel AAV vector targets ON bipolar cells and restores visual function in a mouse model of complete congenital stationary night blindness. Hum Mol Genet 2015; 24: 6229-6239
  • 46 Gottlob I, Proudlock FA. Aetiology of infantile nystagmus. Curr Opin Neurol 2014; 27: 83-91
  • 47 Sieving PA, Richards JE, Bingham EL. Dominant congenital complete nyctalopia and GLY90ASP rhodopsin mutation. Invest Ophthalmol Vis Sci 1992; 33: 1397
  • 48 Dryja TP, Hahn LB, Reboul T. et al. Missense mutation in the gene encoding the alpha subunit of rod transducin in the Nougaret form of congenital stationary night blindness. Nat Genet 1996; 13: 358-360
  • 49 Naeem MA, Chavali VR, Ali S. et al. GNAT1 associated with autosomal recessive congenital stationary night blindness. Invest Ophthalmol Vis Sci 2012; 53: 1353-1361
  • 50 Gal A, Orth U, Baehr W. et al. Heterozygous missense mutation in the rod cGMP phosphodiesterase beta-subunit gene in autosomal dominant stationary night blindness. Nat Genet 1994; 7: 64-68
  • 51 Bech-Hansen NT, Naylor MJ, Maybaum TA. et al. Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat Genet 2000; 26: 319-323
  • 52 Pusch CM, Zeitz C, Brandau O. et al. The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein. Nat Genet 2000; 26: 324-327
  • 53 Dryja TP, McGee TL, Berson EL. et al. Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci U S A 2005; 102: 4884-4889
  • 54 Zeitz C, van Genderen M, Neidhardt J. et al. Mutations in GRM6 cause autosomal recessive congenital stationary night blindness with a distinctive scotopic 15-Hz flicker electroretinogram. Invest Ophthalmol Vis Sci 2005; 46: 4328-4335
  • 55 Li Z, Sergouniotis PI, Michaelides M. et al. Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. Am J Hum Genet 2009; 85: 711-719
  • 56 Audo I, Kohl S, Leroy BP. et al. TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 2009; 85: 720-729
  • 57 van Genderen MM, Bijveld MM, Claassen YB. et al. Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am J Hum Genet 2009; 85: 730-736
  • 58 Audo I, Bujakowska K, Orhan E. et al. Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 2012; 90: 321-330
  • 59 Zeitz C, Jacobson SG, Hamel CP. et al. Whole-exome sequencing identifies LRIT3 mutations as a cause of autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 2013; 92: 67-75
  • 60 Bech-Hansen NT, Naylor MJ, Maybaum TA. et al. Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 1998; 19: 264-267
  • 61 Strom TM, Nyakatura G, Apfelstedt-Sylla E. et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet 1998; 19: 260-263
  • 62 Zeitz C, Kloeckener-Gruissem B, Forster U. et al. Mutations in CABP4, the gene encoding the Ca2+-binding protein 4, cause autosomal recessive night blindness. Am J Hum Genet 2006; 79: 657-667
  • 63 Wycisk KA, Zeitz C, Feil S. et al. Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. Am J Hum Genet 2006; 79: 973-977