neuroreha 2017; 09(01): 35-40
DOI: 10.1055/s-0043-101150
Schwerpunkt Virtuelle Realität
Aus der Praxis
Georg Thieme Verlag KG Stuttgart · New York

Die praktische Anwendung von Exergames und virtueller Realität in der pädiatrischen Rehabilitation

Hubertus van Hedel
,
Jan Lieber
,
Sandra Ricklin
,
Andreas Meyer-Heim
Further Information

Publication History

Publication Date:
13 March 2017 (online)

Zusammenfassung

Aufgrund der großen Fortschritte in der Rehabilitationstechnologie werden konventionelle Therapien wie Physiotherapie oder Ergotherapie durch robotik- und computerunterstützte Rehabilitationsgeräte ergänzt. Diese innovativen Systeme verwenden Spiele (Exergames), um ein motivierendes und intensives Training anzubieten. In diesem Artikel möchten wir aufzeigen, wie Exergames ergänzend zu bestehenden Therapien eingesetzt werden können, was die Voraussetzungen von guten Exergames sind, welche Überlegungen Therapeuten sich machen, um für den Patienten geeignete Exergames zu selektieren, und welche Entwicklungsmöglichkeiten in diesem Bereich bestehen.

 
  • Literatur

  • 1 Aurich-Schuler T, Warken B, Graser J. et al. Practical recommendations for robot-assisted treadmill therapy (Lokomat®) in children with cerebral palsy: Indications, goal setting and clinical implementation within the WHO-ICF framework. Neuropediatrics 2015; 46: 248-260
  • 2 Baque E, Barber L, Sakzewski L. et al. Randomized controlled trial of web-based multimodal therapy for children with acquired brain injury to improve gross motor capacity and performance. Clin Rehabil. 07.06.2016
  • 3 Brütsch K, Koenig A, Zimmerli L. et al. Virtual reality for enhancement of robot-assisted gait training in children with neurological gait disorders. J Rehabil Med 2011; 43 (06) 493-499
  • 4 Domingo A, Lam T. Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury. J Neuroeng Rehabil 2014; 11: 167
  • 5 Faria AL, Andrade A, Soares L. et al. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: A randomized controlled trial with stroke patients. J Neuroeng Rehabil 2016; 13 (01) 96
  • 6 Galvin J, McDonald R, Catroppa C. et al. Does intervention using virtual reality improve upper limb function in children with neurological impairment: A systematic review of the evidence. Brain Inj 2011; 25 (05) 435-442
  • 7 Gerber CN, Kunz B, van Hedel HJ. Preparing a neuropediatric upper limb exergame rehabilitation system for home-use: A feasibility study. J Neuroeng Rehab 2016; 13 (01) 33
  • 8 Holden MK. Virtual environments for motor rehabilitation: Review. Cyberpsychol Behav 2005; 8: 187-211 Diskussion 212–219
  • 9 James S, Ziviani J, Ware RS. et al. Randomized controlled trial of web-based multimodal therapy for unilateral cerebral palsy to improve occupational performance. Dev Med Child Neurol 2015; 57 (06) 530-538
  • 10 Keller U, Schölch S, Albisser U. et al. Robot-assisted arm assessments in spinal cord injured patients: A consideration of concept study. PLoS One 2015; 10 (05) e0126948
  • 11 Keller U, van Hedel HJ, Klamroth-Marganska V. et al. ChARMin: The first actuated exoskeleton robot for pediatric arm rehabilitation. IEEE/ASME Transactions on Mechatronics 2016; 21 (05) 2201-2213
  • 12 Labruyère R, Gerber CN, Birrer-Brutsch K. et al. Requirements for and impact of a serious game for neuro-pediatric robot-assisted gait training. Res Dev Disabil 2013; 34: 3906-3915
  • 13 Meyer-Heim A, van Hedel HJ. Robot-assisted and computer-enhanced therapies for children with cerebral palsy: Current state and clinical implementation. Semin Pediatr Neurol 2013; 20: 139-145
  • 14 Meyer-Heim A, van Hedel HJ. Roboterunterstützte und computerbasierte Neurorehabilitation für Kinder: The story behind. Praxis; Bern 1994: 2014. 103 883-892
  • 15 Reid DT. Benefits of a virtual play rehabilitation environment for children with cerebral palsy on perceptions of self-efficacy: A pilot study. Pediatr Rehabil 2002; 5 (03) 141-148
  • 16 Royal Dutch Society for Physical Therapy. KNGF Clinical Practice Guideline for Physical Therapy in patients with stroke. V-12/2014. In Internet: www.fysionet.nl Stand: 09.01.2017
  • 17 Schmartz AC, Meyer-Heim AD, Müller R. et al. Measurement of muscle stiffness using robotic assisted gait orthosis in children with cerebral palsy: A proof of concept. Disabil Rehabil Assist Technol 2011; 6: 29-37
  • 18 Schuler T, Brutsch K, Muller R. et al. Virtual realities as motivational tools for robotic assisted gait training in children: A surface electromyography study. NeuroRehabilitation 2011; 28: 401-411
  • 19 Sherman WR, Craig AB. Understanding virtual reality: Interface, application, and design. San Francisco: Morgan Kaufmann Publishers; 2003
  • 20 Snider L, Majnemer A, Darsaklis V. Virtual reality as a therapeutic modality for children with cerebral palsy. Dev Neurorehabil 2010; 13 (02) 120-128
  • 21 Van Hedel HJ, Aurich-Schuler T. Clinical application of rehabilitation technologies in children undergoing neurorehabilitation. In: Reinkensmeyer DJ, Dietz V. eds. Neurorehabilitation Technology. 2nd ed.. Berlin: Springer International Publishing; 2016
  • 22 Van Hedel HJ, Häfliger N, Gerber CN. Quantifying selective elbow movements during an exergame in children with neurological disorders: A pilot study. J Neuroeng Rehabil 2016; 13 (01) 93
  • 23 Wikipedia. Im Internet: https://en.wikipedia.org/wiki/Immersion_(virtual_reality) Stand: 09.01.2017
  • 24 World Health Organization, WHO. Internationale Klassifikation der Funktionsfähigkeit, Behinderung und Gesundheit bei Kindern und Jugendlichen. Bern: Huber, Hogrefe; 2011
  • 25 Wulf G, Höß M, Prinz W. Instructions for motor learning: Differential effects of internal versus external focus of attention. J Mot Behav 1998; 30: 169-179
  • 26 Wulf G. Bewegungen erlernen und automatisieren. Neuroreha 2011; 1: 18-23