neuroreha 2017; 09(01): 9-14
DOI: 10.1055/s-0042-124244
Schwerpunkt Virtuelle Realität
Georg Thieme Verlag KG Stuttgart · New York

Virtuelle Realität: Was ist im Einsatz?

Jan Mehrholz
1   Leiter Wissenschaftliches Institut; Private Europäische Medizinische Akademie der Klinik Bavaria in Kreischa GmbH, An der Wolfsschlucht 1–2; 01731 Kreischa
,
Bernhard Elsner
,
Simone Thomas
› Author Affiliations
Further Information

Publication History

Publication Date:
13 March 2017 (online)

Zusammenfassung

Virtuelle Technologien halten in den letzten Jahren mehr und mehr Einzug in unser alltägliches Leben. Idealerweise könnten sie in der Neurorehabilitation eingesetzt werden, um die Motivation sorgfältig ausgewählter Patienten für zusätzliches und intensiveres Üben zu steigern. Welche Möglichkeiten es gibt, beschreibt dieser Übersichtsartikel.

 
  • Literatur

  • 1 Akinwuntan AE, De Weerdt W, Feys H. et al. Effect of simulator training on driving after stroke: A randomized controlled trial. Neurology 2005; 6: 843-850
  • 2 Akinwuntan AE, Devos H, Verheyden G. et al. Retraining moderately impaired stroke survivors in driving-related visual attention skills. Top Stroke Rehabil 2010; 5: 328-336
  • 3 Burstin A, Brown R. Use of novel virtual reality system to assess and treat stroke patients with neglect: A feasibility study. Int Rehabil 2009; 77-78
  • 4 Christiansen C, Abreu B, Ottenbacher K. et al. Task performance in virtual environments used for cognitive rehabilitation after traumatic brain injury. Arch Phys Med Rehabil 1998; 8: 888-892
  • 5 Deutsch JE, Borbely M, Filler J. et al. Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Phys Ther 2008; 10: 1196-207
  • 6 Deutsch JE, Brettler A, Smith C. et al. Nintendo Wii sports and Wii fit game analysis, validation, and application to stroke rehabilitation. Top Stroke Rehabil 2011; 6: 701-719
  • 7 Dipietro L, Sabatini A, Dario P. A survey of glove-based systems and their applications. IEEE Trans Systems Man and Cybernetics 2008; Part C. 461-482
  • 8 Ershow AG, Peterson CM, Riley WT. et al. Virtual reality technologies for research and education in obesity and diabetes: Research needs and opportunities. J Diabetes Sci Technol 2011; 2: 212-224
  • 9 Fong KN, Chow KY, Chan BC. et al. Usability of a virtual reality environment simulating an automated teller machine for assessing and training persons with acquired brain injury. J Neuroeng Rehabil 2010; 19
  • 10 Jack D, Boian R, Merians AS. et al. Virtual reality-enhanced stroke rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2001; 3: 308-318
  • 11 Katz N, Ring H, Naveh Y. et al. Interactive virtual environment training for safe street crossing of right hemisphere stroke patients with unilateral spatial neglect. Disabil Rehabil 2005; 20: 1235-1243
  • 12 Klinger E, Chemin I, Lebreton S. et al. A virtual supermarket to assess cognitive planning. CyberPsychology & Behavior 2004; 3: 292-293
  • 13 Kizony R, Katz N, Weiss PL. Adapting an immersive virtual reality system for rehabilitation. J Visu Comput Anim 2003; 261-268
  • 14 Kizony R, Raz L, Katz N. et al. Video-capture virtual reality system for patients with paraplegic spinal cord injury. J Rehabil Res Dev 2005; 5: 595-608
  • 15 Koenig S, Dünser A, Dalrymple-Alford J. Development of virtual environments for patient-centered rehabilitation. Zürich: Proc Int Conf Virtual Rehabil; 2011
  • 16 Kwon JS, Park MJ, Yoon IJ. et al. Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: A double-blind randomized clinical trial. NeuroRehabilitation 2012; 4: 379-385
  • 17 Law AS, Trawley SL, Brown LA. et al. The impact of working memory load on task execution and online plan adjustment during multitasking in a virtual environment. Q J Exp Psychol (Hove) 2013; 6: 1241-1258
  • 18 Lew HL, Poole JH, Lee EH. et al. Predictive validity of driving-simulator assessments following traumatic brain injury: A preliminary study. Brain Inj 2005; 3: 177-188
  • 19 Logie RH, Trawley S, Law A. Multitasking: multiple, domain-specific cognitive functions in a virtual environment. Mem Cognit 2011; 8: 1561-1574
  • 20 Lo Priore C, Castelnuovo G, Liccione D. et al. Experience with V-STORE: Considerations on presence in virtual environments for effective neuropsychological rehabilitation of executive functions. Cyberpsychol Behav 2003; 3: 281-287
  • 21 Marié R, Klinger E, Chemin I. 2003; Cognitive planning assessed by virtual reality. Laval Virtual Conference, Laval, France. VRIC 2003 119-125
  • 22 Mirelman A, Patritti BL, Bonato P. et al. Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture 2010; 4: 433-437
  • 23 Mirelman A, Maidan I, Herman T. et al. Virtual reality for gait training: Can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson’s disease?. J Gerontol A Biol Sci Med Sci 2011; 2: 234-240
  • 24 Mumford N, Wilson PH. Virtual reality in acquired brain injury upper limb rehabilitation: Evidence-based evaluation of clinical research. Brain Inj 2009; 3: 179-191
  • 25 Parsons TD, Bowerly T, Buckwalter JG. et al. A controlled clinical comparison of attention performance in children with ADHD in a virtual reality classroom compared to standard neuropsychological methods. Child Neuropsychol 2007; 4: 363-381
  • 26 Piron L, Turolla A, Agostini M. et al. Exercises for paretic upper limb after stroke: A combined virtual-reality and telemedicine approach. J Rehabil Med 2009; 12: 1016-1102
  • 27 Piron L, Turolla A, Agostini M. et al. Motor learning principles for rehabilitation: A pilot randomized controlled study in poststroke patients. Neurorehabil Neural Repair 2010; 6: 501-508
  • 28 Pollak Y, Weiss PL, Rizzo AA. et al. The utility of a continuous performance test embedded in virtual reality in measuring ADHD-related deficits. J Dev Behav Pediatr 2009; 1: 2-6
  • 29 Pompeu JE, Mendes FA, Silva KG. et al. Effect of Nintendo Wii-based motor and cognitive training on activities of daily living in patients with Parkinson’s disease: A randomised clinical trial. Physiotherapy 2012; 3: 196-204
  • 30 Pugnetti L, Mendozzi L, Motta A. et al. Evaluation and retraining of adults’ cognitive impairment: Which role for virtual reality technology?. Comput Biol Med 1995; 2: 213-227
  • 31 Putrino D. Telerehabilitation and emerging virtual reality approaches to stroke rehabilitation. Curr Opin Neurol 2014; 6: 631-636
  • 32 Rand D, Katz N, Weiss PL. Evaluation of virtual shopping in the VMall: Comparison of post-stroke participants to healthy control groups. Disabil Rehabil 2007; 22: 1710-1719
  • 33 Rand D, Katz N, Weiss PL. Intervention using the VMall for improving motor and functional ability of the upper extremity in post stroke participants. Eur J Phys Rehabil Med 2009; 1: 113-121
  • 34 Rand D, Weiss PL, Katz N. Training multitasking in a virtual supermarket: a novel intervention after stroke. Am J Occup Ther 2009; 5: 535-542
  • 35 Riva G, Carelli L, Gaggioli A. et al. NeuroVR 1.5 – a free virtual reality platform for the assessment and treatment in clinical psychology and neuroscience. Stud Health Technol Inform 2009; 268-270
  • 36 Rizzo A, Buckwalter J, Bowerly T. The virtual classroom: A virtual environment for the assessment and rehabilitation of attention deficits. Cyberpsychol Behav 2000; 3: 483-500
  • 37 Rizzo A, Buckwalter JG, van der Zaag C. Virtual environment applications in clinical neuropsychology. In:. Stanney K. ed. The Handbook of Virtual Environments. New York: Erlbaum Publishing; 2002
  • 38 Rizzo A, Requejo P, Winstein CJ. et al. Virtual reality applications for addressing the needs of those aging with disability. Stud Health Technol Inform 2011; 510-516
  • 39 Sangani S, Weiss PL, Kizony R. Navigating and shopping in a complex virtual urban mall to evaluate cognitive functions. Proc 9th Int Conf Disabil Virtual real Ass technol. Laval, France. 2012
  • 40 Subramanian SK, Levin MF. Viewing medium affects arm motor performance in 3D virtual environments. J Neuroeng Rehabil 2011; 36
  • 41 Suma EA, Lange B, Rizzo A. et al. FAAST: The Flexible Action and Articulated Skeleton Toolkit. 2011 IEEE Virtual Reality Conference 2011; 247-248
  • 42 Standen P, Threapleton K, Connell L. Patients’ use of a home-based virtual reality system to provide rehabilitation of the upper limb following stroke. Phys Ther 2015; 350-359
  • 43 Traylor AC, Bordnick PS, Carter BL. Using virtual reality to assess young adult smokers’ attention to cues. Cyberpsychol Behav 2009; 4: 373-378
  • 44 Tresser S. Case study: Using a novel virtual reality computer game for occupational therapy intervention. Presence 2012; 359-371
  • 45 Tsirlin I, Dupierrix E, Chokron S. et al. Uses of virtual reality for diagnosis, rehabilitation and study of unilateral spatial neglect: Review and analysis. Cyberpsychol Behav 2009; 2: 175-181
  • 46 Turolla A, Dam M, Ventura L. et al. Virtual reality for the rehabilitation of the upper limb motor function after stroke: A prospective controlled trial. J Neuroeng Rehabil 2013; 85
  • 47 Viau A, Feldman AG, McFadyen BJ. et al. Reaching in reality and virtual reality: A comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J Neuroeng Rehabil 2004; 1: 11
  • 48 Weiss PL, Rand D, Katz N. et al. Video capture virtual reality as a flexible and effective rehabilitation tool. J Neuroeng Rehabil 2004; 1: 12
  • 49 Weiss PL, Sveistrup H, Rand D. et al. Video capture virtual reality: A decade of rehabilitation assessment and intervention. Physical Therapy Reviews 2009; 5: 307-321
  • 50 Weiss P, Kizony R, Feintuch U. et al. Virtual reality applications in neurorehabilitation. In:. Selzer M, Clarke S, Cohen L. et al. Textbook of Neural Repair and Rehabilitation. New York: Cambridge University Press; 2014: 198-219
  • 51 Yip BC, Man DW. Virtual reality (VR)-based community living skills training for people with acquired brain injury: A pilot study. Brain Inj 2009; 13–14: 1017-1026