Klin Monbl Augenheilkd 2016; 233(12): 1350-1356
DOI: 10.1055/s-0042-105873
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Künstliche Netzhaut aus Stammzellen

Stem Cells for Retina Replacement
I. P. Seitz
1   Universitäts-Augenklinik, Department für Augenheilkunde, Universitätsklinikum Tübingen
2   Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, Oxford, United Kingdom of Great Britain and Northern Ireland
,
K. Achberger
3   Institut für Neuroanatomie, Eberhard-Karls-Universität Tübingen
,
S. Liebau
3   Institut für Neuroanatomie, Eberhard-Karls-Universität Tübingen
,
M. D. Fischer
1   Universitäts-Augenklinik, Department für Augenheilkunde, Universitätsklinikum Tübingen
2   Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, Oxford, United Kingdom of Great Britain and Northern Ireland
› Author Affiliations
Further Information

Publication History

eingereicht 31 December 2015

akzeptiert 18 March 2016

Publication Date:
01 August 2016 (online)

Zusammenfassung

Zellbasierte Verfahren der regenerativen Medizin versprechen am Auge eine ursachenunabhängige Therapie von degenerativen Netzhauterkrankungen im Endstadium. Beim Hornhautersatz ist die Transplantation in der Augenheilkunde gelebter Alltag. Im Bereich der Netzhaut gilt es dagegen noch, zahlreiche Hürden zu nehmen, bevor eine klinische Anwendung sinnvoll erscheint. Die größten Herausforderungen stellen dabei die Gewinnung und funktionelle Integration von intaktem Netzhautgewebe dar. Durch die Entwicklung der Pluripotenzinduktion kann mehrschichtiges Netzhautgewebe in vitro aus eigenen Körperzellen der Patienten generiert werden. Von der möglichen Lösung des Spenderproblems angespornt, zeichnen Folgearbeiten der letzten Jahre nun ein neues Bild vom Potenzial der Netzhauttransplantation. Dieser Artikel beleuchtet den Stand zellbasierter Ersatzverfahren sowie die Perspektiven einer künstlichen Netzhaut aus Stammzellen und diskutiert deren Potenzial im klinischen Kontext.

Abstract

In ophthalmology, regenerative medicine is rapidly becoming a reality. Cell based treatment strategies in end stage retinal degeneration may be of therapeutic value, whatever the mechanism of disease mechanism. However, while corneal transplantation is commonly performed with excellent results, many obstacles must be overcome before retinal transplants can become clinically useful. The major problems are the production of appropriate transplants and functional integration in situ. New technologies allow the production of autologous transplants by inducing pluripotency in adult somatic cells. Driven by this development, exciting new research has been conducted on the development of artificial retinal tissue for basic research and transplantation. This article reviews this progress and discusses its clinical utility.

 
  • Literatur

  • 1 Geller A, Sieving P. How many cones are required to “see”: Lessons from Stargardtʼs macular dystrophy and from modeling with degenerate photoreceptor arrays. In: Hollyfield JG, Anderson RE, LaVail MM, eds. Retinal Degeneration. New York: Springer US; 1993: 25-33
  • 2 Daiger SP, Bowne SJ, Sullivan LS. Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol 2007; 125: 151-158
  • 3 Ku CA, Pennesi ME. Retinal gene therapy: current progress and future prospects. Expert Rev Ophthalmol 2015; 10: 281-299
  • 4 Garoon RB, Stout JT. Update on ocular gene therapy and advances in treatment of inherited retinal diseases and exudative macular degeneration. Curr Opin Ophthalmol 2016; 27: 268-273
  • 5 Salganik M, Hirsch ML, Samulski RJ. Adeno-associated virus as a mammalian DNA vector. Microbiol Spectr 2015; 3 DOI: 10.1128/microbiolspec.MDNA3-0052-2014.
  • 6 MacLaren RE, Groppe M, Barnard AR et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 2014; 383: 1129-1137
  • 7 Acland GM, Aguirre GD, Bennett J et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005; 12: 1072-1082
  • 8 Bainbridge J, Mehat M, Sundaram V et al. Long-term effect of gene therapy on Leberʼs congenital amaurosis. N Engl J Med 2015; 372: 1887-1897
  • 9 Zein WM, Jeffrey BG, Wiley HE et al. CNGB3-achromatopsia clinical trial with CNTF: diminished rod pathway responses with no evidence of improvement in cone function. Invest Ophthalmol Vis Sci 2014; 55: 6301-6308
  • 10 Schatz A, Arango-Gonzalez B, Fischer D et al. Transcorneal electrical stimulation shows neuroprotective effects in retinas of light-exposed rats. Invest Ophthalmol Vis Sci 2012; 53: 5552-5561
  • 11 Chinskey ND, Besirli CG, Zacks DN. Retinal cell death and current strategies in retinal neuroprotection. Curr Opin Ophthalmol 2014; 25: 228-233
  • 12 Lin H, Ouyang H, Zhu J et al. Lens regeneration using endogenous stem cells with gain of visual function. Nature 2016; 531: 323-328
  • 13 Stingl K, Bartz-Schmidt KU, Besch D et al. Subretinal Visual Implant Alpha IMS–Clinical trial interim report. Vision Res 2015; 111: 149-160
  • 14 Ho AC, Humayun MS, Dorn JD et al. Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology 2015; 122: 1547-1554
  • 15 Zrenner E, Bartz-Schmidt KU, Benav H et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 2011; 278: 1489-1497
  • 16 Volland S, Esteve-Rudd J, Hoo J et al. A comparison of some organizational characteristics of the mouse central retina and the human macula. PLoS One 2015; 10: e0125631
  • 17 Goldman D. Müller glial cell reprogramming and retina regeneration. Nat Rev Neurosci 2014; 15: 431-442
  • 18 Lenkowski JR, Raymond PA. Müller glia: stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res 2014; 40: 94-123
  • 19 Schwartz SD, Hubschman JP, Heilwell G et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 2012; 379: 713-720
  • 20 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676
  • 21 Kim K, Doi A, Wen B et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010; 467: 285-290
  • 22 Vaskova EA, Stekleneva AE, Medvedev SP et al. “Epigenetic memory” phenomenon in induced pluripotent stem cells. Acta Naturae 2013; 5: 15-21
  • 23 Lewandowski J, Kurpisz M. Techniques of human embryonic stem cell and induced pluripotent stem cell derivation. Arch Immunol Ther Exp (Warsz) 2016; DOI: 10.1007/s00005-016-0385-y. [Epub ahead of print]
  • 24 Zhao T, Zhang ZN, Rong Z et al. Immunogenicity of induced pluripotent stem cells. Nature 2011; 474: 212-215
  • 25 Guha P, Morgan JW, Mostoslavsky G et al. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell 2013; 12: 407-412
  • 26 Binder S, Stanzel B, Krebs I et al. Transplantation of the RPE in AMD. Prog Retin Eye Res 2007; 26: 516-554
  • 27 Lamba DA, Karl MO, Ware CB et al. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 2006; 103: 12769-12774
  • 28 Lamba DA, McUsic A, Hirata RK et al. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 2010; 5: e8763
  • 29 Tucker BA, Park IH, Qi SD et al. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One 2011; 6: e18992
  • 30 MacLaren RE, Pearson RA, MacNeil A et al. Retinal repair by transplantation of photoreceptor precursors. Nature 2006; 444: 203-207
  • 31 Singh MS, Charbel Issa P, Butler R et al. Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proc Natl Acad Sci U S A 2013; 110: 1101-1106
  • 32 Tomita M, Lavik E, Klassen H et al. Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells 2005; 23: 1579-1588
  • 33 Diniz B, Thomas P, Thomas B et al. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci 2013; 54: 5087-5096
  • 34 Schwartz SD, Regillo CD, Lam BL et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardtʼs macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 2015; 385: 509-516
  • 35 Ghosh F, Wong F, Johansson K et al. Transplantation of full-thickness retina in the rhodopsin transgenic pig. Retina 2004; 24: 98-109
  • 36 Seiler MJ, Thomas BB, Chen Z et al. Retinal transplants restore visual responses: trans-synaptic tracing from visually responsive sites labels transplant neurons. Eur J Neurosci 2008; 28: 208-220
  • 37 Eiraku M, Takata N, Ishibashi H et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011; 472: 51-56
  • 38 Nakano T, Ando S, Takata N et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 2012; 10: 771-785
  • 39 Zhong X, Gutierrez C, Xue T et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 2014; 5: 4047
  • 40 Assawachananont J, Mandai M, Okamoto S et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Reports 2014; 2: 662-674
  • 41 Hayashi R, Ishikawa Y, Sasamoto Y et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 2016; 531: 376-380