Synthesis 2024; 56(06): 1035-1041
DOI: 10.1055/s-0041-1738440
paper
Emerging Trends in Glycoscience

Chemoenzymatic Synthesis of arabino-Configured Bicyclic Nucleosides

Harbansh Singla
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India
,
Jyotirmoy Maity
b   Department of Chemistry, St. Stephen’s College, University of Delhi, Delhi 110 007, India
,
Sandeep Kumar
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India
,
Kavita Kavita
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India
,
Riya Chaudhary
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India
,
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India
› Author Affiliations
Harbansh Singla and Kavita thank CSIR, New Delhi for the award of a Senior research fellowship. We are grateful to Institute of Eminence, University of Delhi for providing financial support to strengthen research and development.


Abstract

A convergent route for the synthesis of a new class of bicyclic nucleosides has been developed. The synthetic route to the corresponding arabino-configured uracil and thymine bicyclic nucleosides proceeds in 24 and 27% overall yields, respectively, starting from 1,2,5,6-di-O-isopropylidene-α-d-glucofuranose. This synthetic protocol includes some crucial steps such as Vorbrüggen base coupling and chemo-enzymatic regioselective acetylation of the primary hydroxyl group by using Lipozyme® TL IM where it was found that Lipozyme® TL IM could be recovered and reused for selective acetylation without losing its selectivity.

Supporting Information



Publication History

Received: 07 February 2023

Accepted after revision: 20 April 2023

Article published online:
22 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Jordheim LP, Durantel D, Zoulim F, Dumontet C. Nat. Rev. Drug Discovery 2013; 12: 447
  • 2 Liang X, Baker BF, Crooke RM. J. Biol. Chem. Rev. 2021; 296: 100416
  • 3 Koizumi M. Curr. Top. Med. Chem. 2007; 7: 661
  • 4 Deleavey GF, Damha MJ. Chem. Biol. 2012; 19: 937
  • 5 El Alaoui AM, Faaj A, Pierra C, Boudou V, Johnson R, Mathe C, Gosselin G, Korba BE, Schinazi RF, Sommadossi JP. Antivir. Chem. Chemother. 1996; 7: 276
  • 6 Chu CK, Ma L, Olegen S, Pierra C, Du J, Gumina G, Gullen E, Cheng YC, Schinazi RF. J. Med. Chem. 2000; 43: 3906
  • 7 Sharma P, Nurpeisov V, Santiago HB, Beltran T, Schinazi R. Curr. Top. Med. Chem. 2004; 4: 895
  • 8 Otto M. Curr. Opin. Pharmacol. 2004; 4: 431
  • 9 Bonate PL, Arthaud L, Cantrell WR, Stephenson K, Secrist JA, Weitman S. Nat. Rev. Drug Discov. 2006; 5: 855
  • 10 Miura S, Izuta S. Curr. Drug Targets 2004; 5: 191
  • 11 Elgemeie G. Curr. Pharm. Des. 2003; 9: 2627
  • 12 Parker W, Secrist J, Waud W. Curr. Opin. Investig. Drugs 2004; 5: 592
  • 13 Sharma VK, Sharma RK, Singh SK. MedChemComm 2014; 5: 1454
  • 14 Mehellou Y, Clercq ED. J. Med. Chem. 2010; 53: 521
  • 15 Clercq ED. Annu. Rev. Pharmacol. Toxicol. 2011; 51: 1
  • 16 Clercq ED. J. Med. Chem. 2010; 53: 1438
  • 17 Mathe C, Perigaud C. Eur. J. Org. Chem. 2008; 1489
  • 18 Sharma VK, Rungta P, Maikhuri VK, Prasad AK. Sustain. Chem. Process. 2015; 3: 2
  • 19 Goswami A, Prasad AK, Maity J, Khaneja N. Nucleosides, Nucleotides Nucleic Acids 2022; 41: 503
  • 20 Wengel J, Petersen M, Frieden M, Koch T. Lett. Pept. Sci. 2003; 10: 237
  • 21 Du J, Chun BK, Mosley RT, Bansal S, Bao H, Espiritu C, Lam AM, Murakami E, Niu C, Micolochick-Steuer HM, Furman PA, Sofia MJ. J. Med. Chem. 2014; 57: 1826
  • 22 Soengas RG, de Silva G, Estevez JC. Molecules 2017; 22: 2028
  • 23 Kumar R, Kumar M, Kumar V, Kumar A, Haque N, Kumar R, Prasad AK. Synth. Commun. 2020; 50: 3369
  • 24 Amblard F, Nolan SP, Agrofoglio LA. Tetrahedron 2005; 61: 7067
  • 25 Mieczkowski A, Peltier P, Zevaco T, Agrofogilo LA. Tetrahedron 2009; 65: 4053
  • 26 Mio S, Kumagawa Y, Sugai S. Tetrahedron 1991; 47: 2133
  • 27 Siehl LD, Subramanian MV, Walters EW, Lee SF, Anderson RJ, Toschi AG. Plant. Physiol. 1996; 110: 753
  • 28 Rajwanshi VK, Kumar R, Hanson MK, Wengel J. J. Chem. Soc., Perkin Trans. 1 1999; 1407
  • 29 Hojland T, Babu BR, Wengel J. Nucleic Acid Symposium Series 2008; 52: 271 DOI: 10.1093/nass/nrn137.
  • 30 Paquette LA. Aust. J. Chem. 2004; 57: 7
    • 31a Chatgilialoglu C, Ferreri C, Gimisis T, Roberti M, Balzarini J, De Clercq E. Nucleosides Nucleotides Nucleic Acids 2004; 23: 1565
    • 31b Li X, Wang R, Wang Y, Chen H, Li Z, Ba C, Zhang J. Tetrahedron 2008; 64: 9911
  • 32 Kiritsis C, Manta S, Dimopoulou A, Parmenopoulou V, Gkizis P, Balzarini J, Komiotis D. Carbohydr. Res. 2014; 383: 50
    • 33a Tronchet JM. J, Seman M, Dilda P, Clercq ED, Balzarini J. Nucleosides Nucleotides Nucleic Acids 2000; 19: 775
    • 33b Das K, Bauman JD, Rim AS, Dharia C, Clark AD, Camarasa MJ, Balzarini J, Arnold E. J. Med. Chem. 2011; 54: 2727
  • 34 Dang Q, Zhang Z, He S, Liu Y, Chen T, Bogen S, Girijavallabhan V, Olsen DB, Meinke PM. Tetrahedron Lett. 2014; 55: 4407
  • 35 Jonckers TH. M, Vandyck K, Vandekerckhove L, Hu L, Tahri A, Hoof SV. J Med. Chem. 2014; 57: 1836
  • 36 Mangla P, Maity J, Rungta P, Verma V, Sanghvi YS, Prasad AK. ChemistrySelect 2019; 4: 3241
  • 37 Mangla P, Rungta P, Maikhuri VK, Shivani, Prasad AK. Trends Carbohydr. Res. 2017; 9: 34
  • 38 Kumar R, Kumar M, Singh A, Singh N, Maity J, Prasad AK. Carbohydr. Res. 2017; 445: 88
  • 39 Sharma VK, Kumar M, Olsen CE, Prasad AK. J. Org. Chem. 2014; 79: 6336
  • 40 Sharma VK, Kumar M, Sharma D, Olsen CE, Prasad AK. J. Org. Chem. 2014; 79: 8516
  • 41 Kumar S, Singla H, Maity J, Mangla P, Prasad AK. Carbohydr. Res. 2020; 492: 108013
    • 42a Nagy A, Csordás B, Zsoldos-Mády V, Pintér I, Farkas V, Perczel A. Amino Acids 2017; 49: 223
    • 42b Mayes BA, Moussa AM, Stewart AJ. Patent WO 2014/066239 A l, 2014
  • 43 Niedballa U, Vorbrüggen H. Angew. Chem., Int. Ed. Engl. 1970; 9: 461
  • 44 Pseudorotational parameters were calculated by using the following website: https://cactus.nci.nih.gov/prosit
  • 45 CCDC 2240085 (8b) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures