Synthesis 2023; 55(18): 2951-2958
DOI: 10.1055/s-0041-1738439
paper
Special Issue Electrochemical Organic Synthesis

Nickel-Catalyzed Electrochemical Cyclizative Carboxylation of Alkene-Tethered Carbamoyl Chlorides with Carbon Dioxide

Lin-Lin Wang
,
Xiao-Fei Liu
,
He Wang
,
Li Tao
,
Jian Huang
,
Wei-Min Ren
,
Xiao-Bing Lu
,
This work was supported by the National Natural Science Foundation of China (NSFC; Nos. 22278054 and 21920102006) and the Fundamental Research Funds for the Central Universities (DUT22LAB609).


Abstract

Nickel-catalyzed electrochemical cyclizative carboxylation of alkene-tethered carbamoyl chlorides with atmospheric carbon dioxide in an undivided cell under simple constant current conditions is reported. This reaction is conducted with high efficiency under mild conditions, providing a convenient and green access to valuable 2-oxoindolin-3-ylacetic acids and 2-oxo-tetrahydroquinoline-4-carboxylic acids.

Supporting Information



Publication History

Received: 17 February 2023

Accepted after revision: 13 April 2023

Article published online:
16 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Sakakura T, Choi J.-C, Yasuda H. Chem. Rev. 2007; 107: 2365
    • 1b Liu Q, Wu LP, Jackstell R, Beller M. Nat. Commun. 2015; 6: 5933
    • 1c Yang Y, Lee J.-W. Chem. Sci. 2019; 10: 3905
    • 1d Shi Y, Pan BW, Zhou Y, Zhou J, Liu YL, Zhou F. Org. Biomol. Chem. 2020; 18: 8597
    • 1e Davies J, Lyonnet JR, Zimin DP, Martin R. Chem 2021; 7: 2927
    • 1f Ran C.-K, Liao L.-L, Gao T.-Y, Gui Y.-Y, Yu D.-G. Curr. Opin. Green Sustainable Chem. 2021; 32: 100525
    • 1g Das S, D’Elia V, He L.-N, Kleij AW, Yamada T. Green Chem. Eng. 2022; 3: 93
    • 2a Zhang W.-Z, Zhang N, Guo C.-X, Lu X.-B. Chin. J. Org. Chem. 2017; 37: 1309
    • 2b Zhang Z, Ye J.-H, Wu D.-S, Zhou Y.-Q, Yu D.-G. Chem. Asian J. 2018; 13: 2292
    • 2c Wang S, Xi C. Chem. Soc. Rev. 2019; 48: 382
    • 2d Zhou C, Li M, Yu J.-T, Sun S, Cheng J. Chin. J. Org. Chem. 2020; 40: 2221
    • 2e Ye J.-H, Ju T, Huang H, Liao L.-L, Yu D.-G. Acc. Chem. Res. 2021; 54: 2518
    • 2f Cai S.-F, Li H.-R, He L.-N. Green Chem. 2021; 23: 9334
    • 2g Wang L, Qi C.-R, Xiong W.-F, Jiang H.-F. Chin. J. Catal. 2022; 43: 1598
    • 3a Wang X, Liu Y, Martin R. J. Am. Chem. Soc. 2015; 137: 6476
    • 3b Borjesson M, Moragas T, Martin R. J. Am. Chem. Soc. 2016; 138: 7504
    • 3c Higuchi Y, Mita T, Sato Y. Org. Lett. 2017; 19: 2710
    • 3d Yan S.-S, Fu Q, Liao L.-L, Sun G.-Q, Ye J.-H, Gong L, Bo-Xue Y.-Z, Yu D.-G. Coord. Chem. Rev. 2018; 374: 439
    • 3e Borjesson M, Janssen-Muller D, Sahoo B, Duan Y, Wang X, Martin R. J. Am. Chem. Soc. 2020; 142: 16234
    • 3f Chen X.-W, Yue J.-P, Wang K, Gui Y.-Y, Niu Y.-N, Liu J, Ran C.-K, Kong W, Zhou W.-J, Yu D.-G. Angew. Chem. Int. Ed. 2021; 60: 14068
    • 3g Cerveri A, Giovanelli R, Sella D, Pedrazzani R, Monari M, Nieto Faza O, Lopez CS, Bandini M. Chem. Eur. J. 2021; 27: 7657
    • 4a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 4b Yong Y, Lei A. Acc. Chem. Res. 2019; 52: 3309
    • 4c Xiong P, Xu H.-C. Acc. Chem. Res. 2019; 52: 3339
    • 4d Chang X, Zhang Q, Guo C. Angew. Chem. Int. Ed. 2020; 59: 12612
    • 4e Novaes LF. T, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
    • 4f Ma C, Fang P, Liu Z.-R, Xu S.-S, Xu K, Cheng X, Lei A, Xu H.-C, Zeng C, Mei T.-S. Sci. Bull. 2021; 66: 2412
    • 4g Chen N, Xu HC. Green Synth. Catal. 2021; 2: 165
    • 4h Shi SH, Liang Y, Jiao N. Chem. Rev. 2021; 121: 485
    • 4i Tay NE. S, Lehnherr D, Rovis T. Chem. Rev. 2022; 122: 2487
    • 4j Huang B, Sun Z, Sun G. eScience 2022; 2: 243
    • 4k Cheng X, Lei A, Mei T.-S, Xu H.-C, Xu K, Zeng C. CCS Chem. 2022; 4: 1120
    • 4l Jiao K.-J, Wang Z.-H, Ma C, Liu H.-L, Cheng B, Mei T.-S. Chem Catal. 2022; 2: 3019
    • 5a Matthessen R, Fransaer J, Binnemans K, De Vos DE. Beilstein J. Org. Chem. 2014; 10: 2484
    • 5b Rossi L. Curr. Green Chem. 2015; 2: 77
    • 5c Cao Y, He X, Wang N, Li H.-R, He L.-N. Chin. J. Chem. 2018; 36: 644
    • 5d Kinzel NW, Werlé C, Leitner W. Angew. Chem. Int. Ed. 2021; 60: 11628
    • 5e Senboku H. Chem. Rec. 2021; 21: 2354
    • 5f Yang Z, Yu Y, Lai L, Zhou L, Ye K, Chen F.-E. Green Synth. Catal. 2021; 2: 19
    • 5g Liu X.-F, Zhang K, Tao L, Lu X.-B, Zhang W.-Z. Green Chem. Eng. 2022; 3: 125
    • 5h Wang S, Feng T, Wang Y, Qiu Y. Chem. Asian J. 2022; 17: e202200543
    • 5i Yu Z.-Q, Shi M. Chem. Commun. 2022; 58: 13539

      For recent examples, see:
    • 6a Jiao K.-J, Li Z.-M, Xu X.-T, Zhang L.-P, Li Y.-Q, Zhang K, Mei T.-S. Org. Chem. Front. 2018; 5: 2244
    • 6b Ang NW. J, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 12842
    • 6c Xie S.-L, Gao X.-T, Wu H.-H, Zhou F, Zhou J. Org. Lett. 2020; 22: 8424
    • 6d Sun G.-Q, Zhang W, Liao L.-L, Li L, Nie Z.-H, Wu J.-G, Zhang Z, Yu D.-G. Nat. Commun. 2021; 21: 7086
    • 6e Zhong J.-S, Yang Z.-X, Ding C.-L, Huang Y.-F, Zhao Y, Yan H, Ye K.-Y. J. Org. Chem. 2021; 86: 16162
    • 6f Senboku H, Minemura Y, Suzuki Y, Matsuno H, Takskuwa M. J. Org. Chem. 2021; 86: 16077
    • 6g Alkayal A, Tabas V, Motanaro S, Wright IA, Malkov AV, Buckley BR. J. Am. Chem. Soc. 2020; 142: 1780
    • 6h Zhang W, Lin S. J. Am. Chem. Soc. 2020; 142: 20661
    • 6i You Y, Kanna W, Takano H, Hayashi H, Maeda S, Mita T. J. Am. Chem. Soc. 2022; 144: 3685
    • 6j Wang Y, Tang S, Yang G, Wang S, Ma D, Qiu Y. Angew. Chem. Int. Ed. 2022; e202207746
    • 6k Liao L.-L, Wang Z.-H, Cao K.-G, Sun G.-Q, Zhang W, Ran C.-K, Li Y, Chen L, Cao G.-M, Yu D.-G. J. Am. Chem. Soc. 2022; 144: 2062
    • 6l Wang Y, Zhao Z, Pan D, Wang S, Jia K, Ma D, Yang G, Xue X.-S, Qiu Y. Angew. Chem. Int. Ed. 2022; 61: e202210201
    • 6m Pan Y.-Z, Xia Q, Zhu J.-X, Wang Y.-C, Liang Y, Wang H, Tang H.-T, Pan Y.-M. Org. Lett. 2022; 24: 8239
    • 6n Zhao Z, Liu Y, Wang S, Tang S, Ma D, Zhu Z, Guo C, Qiu Y. Angew. Chem. Int. Ed. 2023; 62: e202214710
    • 6o Sun G.-Q, Yu P, Zhang W, Zhang W, Wang Y, Liao L.-L, Zhang Z, Li L, Lu Z, Yu D.-G, Lin S. Nature 2023; 615: 67
    • 7a Zhang K, Liu X.-F, Zhang W.-Z, Ren W.-M, Lu X.-B. Org. Lett. 2022; 24: 3565
    • 7b Zhang K, Ren B.-H, Liu X.-F, Wang L.-L, Zhang M, Ren W.-M, Lu X.-B, Zhang W.-Z. Angew. Chem. Int. Ed. 2022; e202207660
    • 7c Liu X.-F, Zhang K, Wang L.-L, Wang H, Huang J, Zhang X.-T, Lu X.-B, Zhang W.-Z. J. Org. Chem. 2023; 88: 5212
    • 8a Wu X, Luan B, Zhao W, He F, Wu X.-Y, Qu J.-P, Chen Y. Angew. Chem. Int. Ed. 2022; 61: e202111598
    • 8b Wu X, Turlik A, Luan B, He F, Qu J.-P, Houk KN, Chen Y. Angew. Chem. Int. Ed. 2022; 61: e202207536
    • 9a Kitamura H, Kato A, Esaki T. Eur. J. Pharmacol. 2001; 418: 225
    • 9b Ma S.-S, Mei W.-L, Guo Z.-K, Liu S.-B, Zhao Y.-X, Yang D.-L, Zeng Y.-B, Jiang B, Dai H.-F. Org. Lett. 2013; 15: 1492
    • 9c Liu X.-L, Li B, Gu Z.-H. J. Org. Chem. 2015; 80: 7547
    • 9d Petersen WF, Taylor RJ, Donald JR. Org. Lett. 2017; 19: 874
    • 9e Petersen WF, Taylor RJ. K, Donald JR. Org. Biomol. Chem. 2017; 15: 5831
    • 9f Song J, Chen D.-F, Gong L.-Z. Natl. Sci. Rev. 2017; 4: 381
    • 10a Wang K, Ding Z, Zhou Z, Kong W. J. Am. Chem. Soc. 2018; 140: 12364
    • 10b Hamby TB, LaLama MJ, Sevov CS. Science 2022; 376: 410