Synthesis 2022; 54(19): 4320-4328
DOI: 10.1055/s-0041-1738383
paper

Selective Csp3–F Bond Functionalization with Lithium Iodide

,
Samantha Kyriazakos
,
Rachel Palmer
,
F. Yushra Thanzeel
,
The authors acknowledge the National Institutes of Health (GM106260) for funding. SK and RP thank Georgetown University for a SMURF and a Raines fellowship, respectively.


Abstract

A highly efficient method for C–F bond functionalization of a broad variety of activated and unactivated aliphatic substrates with inexpensive lithium iodide is presented. Primary, secondary, tertiary, benzylic, propargylic and α-functionalized alkyl fluorides react in chlorinated or aromatic solvents at room temperature or upon heating to give the corresponding iodides, which are isolated in 91–99% yield. The reaction is selective for aliphatic monofluorides and can be coupled with in situ nucleophilic iodide replacements to install carbon–carbon, carbon–nitrogen, and carbon–sulfur bonds with high yields. Alkyl difluorides, trifluorides, even in activated benzylic positions, are inert under the same conditions and aryl fluoride bonds are also tolerated.

Supporting Information



Publication History

Received: 06 February 2022

Accepted after revision: 19 April 2022

Article published online:
31 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Acena JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
  • 2 Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
  • 3 Ahrens T, Kohlmann J, Ahrens M, Braun T. Chem. Rev. 2015; 115: 931
  • 4 Champagne PA, Benhassine Y, Desroches J, Paquin J.-F. Angew. Chem. Int. Ed. 2014; 53: 13835
  • 5 Hamel JD, Paquin J.-F. Chem. Commun. 2018; 54: 10224
  • 6 Zi Y, Lange M, Schultz C, Vilotijevic I. Angew. Chem. Int. Ed. 2019; 58: 10727
  • 7 Butcher TW, Yang JL, Amberg WM, Watkins NB, Wilkinson ND, Hartwig JF. Nature 2020; 583: 548
  • 8 Vasilopoulos A, Golden DL, Buss JA, Stahl AS. Org. Lett. 2020; 22: 5753
  • 9 Houle C, Savoie PR, Davies C, Jardel D, Champagne PA, Bibal B, Paquin J.-F. Chem. Eur. J. 2020; 26: 10620
  • 10 Gu W, Haneline MR, Douvris C, Ozerov OV. J. Am. Chem. Soc. 2009; 131: 11203
  • 11 Nishimine T, Fukushi K, Shibata N, Taira H, Tokunaga E, Yamano A, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2014; 53: 517
  • 12 Mandal D, Gupta R, Jaiswal AK, Young RD. J. Am. Chem. Soc. 2020; 142: 2572
  • 13 Traff AM, Janjetovic M, Hilmersson G. Chem. Commun. 2015; 51: 13260
  • 14 Dryzhakov M, Richmond E, Li G, Moran J. J. Fluorine Chem. 2017; 193: 45
  • 15 Jaiswal AK, Prasad PK, Young RD. Chem. Eur. J. 2019; 25: 6290
  • 16 Traff AM, Janjetovic M, Ta L, Hilmersson G. Angew. Chem. Int. Ed. 2013; 52: 12073
  • 17 Janjetovic M, Ekebergh A, Traff AM, Hilmersson G. Org. Lett. 2016; 18: 2804
  • 18 Dryzhakov M, Moran J. ACS Catal. 2016; 6: 3670
  • 19 Balaraman K, Wolf C. Angew. Chem. Int. Ed. 2017; 56: 1390
  • 20 Willcox DR, Nichol GS, Thomas SP. ACS Catal. 2021; 11: 3190
  • 21 Balaraman K, Wolf C. Org. Lett. 2021; 23: 8994
  • 22 Terao J, Ikumi A, Kuniyasu H, Kambe N. J. Am. Chem. Soc. 2003; 125: 5646
  • 23 Matsubara K, Ishibashi T, Koga Y. Org. Lett. 2009; 11: 1765
  • 24 Blessley G, Holden P, Walker M, Brown JM, Gouverneur V. Org. Lett. 2012; 14: 2754
  • 25 Erickson LW, Lucas EL, Tollefson EJ, Jarvo ER. J. Am. Chem. Soc. 2016; 138: 14006
  • 26 Iwasaki T, Yamashita K, Kuniyasu H, Kambe N. Org. Lett. 2017; 19: 3691
  • 27 Wolfe MM. W, Shanahan JP, Kampf JW, Szymczak NK. J. Am. Chem. Soc. 2020; 142: 18698
  • 28 Terao J, Watabe H, Kambe N. J. Am. Chem. Soc. 2005; 127: 3656
  • 29 Iwasaki T, Shimizu R, Imanishi R, Kuniyasu H, Kambe N. Angew. Chem. Int. Ed. 2015; 54: 9347
  • 30 Iwasaki T, Fukuoka A, Yokoyama W, Min X, Hisaki I, Yang T, Ehara M, Kuniyasu H, Kambe N. Chem. Sci. 2018; 9: 2195
  • 31 Iwasaki T, Min X, Fukuoka A, Kuniyasu H, Kambe N. Angew. Chem. Int. Ed. 2016; 55: 5550
  • 32 Cook AM, Wolf C. Angew. Chem. Int. Ed. 2016; 55: 2929
  • 33 Ding R, Wolf C. Chem. Commun. 2016; 52: 3576
  • 34 Balaraman K, Moskowitz M, Liu Y, Wolf C. Synthesis 2016; 48: 2376
  • 35 Balaraman K, Ding R, Wolf C. Adv. Synth. Catal. 2017; 359: 4165
  • 36 Ding R, Wolf C. Org. Lett. 2018; 20: 892
  • 37 Moskowitz M, Balaraman K, Wolf C. J. Org. Chem. 2018; 83: 1661
  • 38 Balaraman K, Moskowitz M, Wolf C. Adv. Synth. Catal. 2018; 360: 4705
  • 39 Ding R, De los Santos ZA, Wolf C. ACS Catal. 2019; 9: 2169
  • 40 Steber SE, Pham AN. D. L, Nelson E, Wolf C. Chirality 2021; 33: 891
  • 41 Ding R, Bakhshi PR, Wolf C. J. Org. Chem. 2016; 82: 1273
  • 42 Thanzeel FY, Sripada A, Wolf C. J. Am. Chem. Soc. 2019; 141: 16382
  • 43 Hassan DS, Kariapper FS, Lynch CC, Wolf C. Synthesis 2022; 54: 2527
  • 44 During the preparation of this manuscript Davis reported similar results, see: Zerban JJ, Bagnall B, Davis TA. Tetrahedron Lett. 2022; 91: 153639
  • 45 Prices for 1 g amounts of LiI ($5.3/g; $0.7/mmol) and YbI2 ($205/g; $87.5/mmol) were obtained from Sigma–Aldrich, November 2021
  • 46 Champagne PA, Pomarole J, Therien M.-E, Benhassine Y, Beaulieu S, Legault CY, Paquin J.-F. Org. Lett. 2013; 15: 2210
  • 47 Champagne PA, Drouin M, Legault CY, Audubert C, Paquin J.-F. J. Fluorine Chem. 2015; 171: 113
  • 48 Gonnard L, Guérinot A, Cossy J. Chem. Eur. J. 2015; 21: 12797
  • 49 Strazzolini P, Runcio A. Eur. J. Org. Chem. 2003; 526
  • 50 Huang Z, Negishi E. Org. Lett. 2006; 8: 3675
  • 51 Zhao Y, Snieckus V. Org. Lett. 2014; 16: 390
  • 52 Depken C, Krätzschmar F, Rieger R, Rode K, Breder A. Angew. Chem. Int. Ed. 2018; 57: 2459
  • 53 Arian D, Kovbasyuk L, Mokhir A. J. Am. Chem. Soc. 2011; 133: 3972
  • 54 Autino JC, Bruzzone L, Romanelli GP, Jios JL, Ancinas HA. An. Quím., Int. Ed. 1998; 94: 292
  • 55 Bezencon O, Bur D, Weller T, Richard-Bildstein S, Remeň L, Sifferlen T, Corminboeuf O, Grisostomi C, Boss C, Prade L, Delahye S, Treiber A, Strickner P, Binkert C, Hess P, Steiner B, Fischli W. J. Med. Chem. 2009; 52: 3689
  • 56 Ortega N, Feher-Voelger A, Brovetto M, Padrón JI, Martín VS, Martín T. Adv. Synth. Catal. 2011; 353: 963
  • 57 Chen J, Lin J.-H, Xiao J.-C. Org. Lett. 2018; 20: 3061
  • 58 Mizukami Y, Song Z, Takahashi T. Org. Lett. 2015; 17: 5942
  • 59 Combe SH, Hosseini A, Song L, Hausmann H, Schreiner PR. Org. Lett. 2017; 19: 6156
  • 60 Ying T, Bao W, Wang Z, Zhang Y. J. Chem. Res. 2005; 96
  • 61 Larock RC, Chow MS. Organometallics 1986; 5: 603
  • 62 Zou H, He W, Dong Q, Wang R, Yi N, Jiang J, Pen D, He W. Eur. J. Org. Chem. 2016; 116
  • 63 Reis AK. C. A, Rittner R. Spectrochim. Acta, Part A 2007; 66: 681
  • 64 Meyer D, Renaud P. Angew. Chem. Int. Ed. 2017; 56: 10858
  • 65 Wang X, Wu C.-Y, Li Y.-S, Dong Z.-B. Eur. J. Org. Chem. 2020; 6770
  • 66 Thai T.-T, Mérel DS, Poater A, Gaillard S, Renaud J.-L. Chem. Eur. J. 2015; 21: 7066
  • 67 Ide T, Barham JP, Fujita M, Kawato Y, Egami H, Hamashima Y. Chem. Sci. 2018; 9: 8453
  • 68 Chaudhary S, Milton MD, Garg P. ChemistrySelect 2017; 2: 650
  • 69 Yatam S, Jadav SS, Gundla R, Gundla KP, Reddy GM, Ahsan MJ, Chimakurthy J. ChemistrySelect 2018; 3: 10305