Semin Respir Crit Care Med 2021; 42(05): 672-682
DOI: 10.1055/s-0041-1733986
Review Article

Any Role of High-Dose Vitamin C for Septic Shock in 2021?

Ankita Agarwal
1   Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia
,
David N. Hager
2   Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
,
Jonathan E. Sevransky
1   Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia
3   Emory Critical Care Center, Emory University, Atlanta, Georgia
› Author Affiliations

Abstract

While the use of vitamin C as a therapeutic agent has been investigated since the 1950s, there has been substantial recent interest in the role of vitamin C supplementation in critical illness and particularly, sepsis and septic shock. Humans cannot synthesize vitamin C and rely on exogenous intake to maintain a plasma concentration of approximately 70 to 80 μmol/L. Vitamin C, in healthy humans, is involved with antioxidant function, wound healing, endothelial function, and catecholamine synthesis. Its function in the human body informs the theoretical basis for why vitamin C supplementation may be beneficial in sepsis/septic shock.

Critically ill patients can be vitamin C deficient due to low dietary intake, increased metabolic demands, inefficient recycling of vitamin C metabolites, and loss due to renal replacement therapy. Intravenous supplementation is required to achieve supraphysiologic serum levels of vitamin C. While some clinical studies of intravenous vitamin C supplementation in sepsis have shown improvements in secondary outcome measures, none of the randomized clinical trials have shown differences between vitamin C supplementation and standard of care and/or placebo in the primary outcome measures of the trials. There are some ongoing studies of high-dose vitamin C administration in patients with sepsis and coronavirus disease 2019; the majority of evidence so far does not support the routine supplementation of vitamin C in patients with sepsis or septic shock.



Publication History

Article published online:
20 September 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Klenner FR. Massive doses of vitamin C and the virus diseases. South Med Surg 1951; 113 (04) 101-107
  • 2 Pauling L. The significance of the evidence about ascorbic acid and the common cold. Proc Natl Acad Sci U S A 1971; 68 (11) 2678-2681
  • 3 Putzu A, Daems AM, Lopez-Delgado JC, Giordano VF, Landoni G. The effect of vitamin C on clinical outcome in critically ill patients: a systematic review with meta-analysis of randomized controlled trials. Crit Care Med 2019; 47 (06) 774-783
  • 4 Carr AC, Rosengrave PC, Bayer S, Chambers S, Mehrtens J, Shaw GM. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care 2017; 21 (01) 300
  • 5 Levine M, Rumsey SC, Daruwala R, Park JB, Wang Y. Criteria and recommendations for vitamin C intake. JAMA 1999; 281 (15) 1415-1423
  • 6 Linster CL, Van Schaftingen E. Vitamin C. Biosynthesis, recycling and degradation in mammals. FEBS J 2007; 274 (01) 1-22
  • 7 Lykkesfeldt J, Tveden-Nyborg P. The pharmacokinetics of vitamin C. Nutrients 2019; 11 (10) 11
  • 8 Cerullo G, Negro M, Parimbelli M. et al. The long history of vitamin C: from prevention of the common cold to potential aid in the treatment of COVID-19. Front Immunol 2020; 11: 574029
  • 9 Cruz-Rus E, Amaya I, Valpuesta V. The challenge of increasing vitamin C content in plant foods. Biotechnol J 2012; 7 (09) 1110-1121
  • 10 Cozzolino D, Phan ADT, Netzel ME, Smyth H, Sultanbawa Y. The use of vibrational spectroscopy to predict vitamin C in Kakadu plum powders (Terminalia ferdinandiana Exell, Combretaceae). J Sci Food Agric 2021; 101 (08) 3208-3213
  • 11 Spoelstra-de Man AME, Oudemans-van Straaten HM, Elbers PWG. Vitamin C and thiamine in critical illness. BJA Educ 2019; 19 (09) 290-296
  • 12 Tsukaguchi H, Tokui T, Mackenzie B. et al. A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 1999; 399 (6731): 70-75
  • 13 Mayersohn M. Ascorbic acid absorption in man–pharmacokinetic implications. Eur J Pharmacol 1972; 19 (01) 140-142
  • 14 Padayatty SJ, Sun H, Wang Y. et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med 2004; 140 (07) 533-537
  • 15 Harrison FE, Green RJ, Dawes SM, May JM. Vitamin C distribution and retention in the mouse brain. Brain Res 2010; 1348: 181-186
  • 16 Hasselholt S, Tveden-Nyborg P, Lykkesfeldt J. Distribution of vitamin C is tissue specific with early saturation of the brain and adrenal glands following differential oral dose regimens in guinea pigs. Br J Nutr 2015; 113 (10) 1539-1549
  • 17 Bánhegyi G, Braun L, Csala M, Puskás F, Mandl J. Ascorbate metabolism and its regulation in animals. Free Radic Biol Med 1997; 23 (05) 793-803
  • 18 May JM, Harrison FE. Role of vitamin C in the function of the vascular endothelium. Antioxid Redox Signal 2013; 19 (17) 2068-2083
  • 19 Teng J, Pourmand A, Mazer-Amirshahi M. Vitamin C: the next step in sepsis management?. J Crit Care 2018; 43: 230-234
  • 20 Winterbourn CC, Vissers MC. Changes in ascorbate levels on stimulation of human neutrophils. Biochim Biophys Acta 1983; 763 (02) 175-179
  • 21 Hong JM, Kim JH, Kang JS, Lee WJ, Hwang YI. Vitamin C is taken up by human T cells via sodium-dependent vitamin C transporter 2 (SVCT2) and exerts inhibitory effects on the activation of these cells in vitro. Anat Cell Biol 2016; 49 (02) 88-98
  • 22 Bergsten P, Amitai G, Kehrl J, Dhariwal KR, Klein HG, Levine M. Millimolar concentrations of ascorbic acid in purified human mononuclear leukocytes. Depletion and reaccumulation. J Biol Chem 1990; 265 (05) 2584-2587
  • 23 Wang Y, Russo TA, Kwon O, Chanock S, Rumsey SC, Levine M. Ascorbate recycling in human neutrophils: induction by bacteria. Proc Natl Acad Sci U S A 1997; 94 (25) 13816-13819
  • 24 Kallio J, Jaakkola M, Mäki M, Kilpeläinen P, Virtanen V. Vitamin C inhibits staphylococcus aureus growth and enhances the inhibitory effect of quercetin on growth of Escherichia coli in vitro. Planta Med 2012; 78 (17) 1824-1830
  • 25 Fisher BJ, Seropian IM, Kraskauskas D. et al. Ascorbic acid attenuates lipopolysaccharide-induced acute lung injury. Crit Care Med 2011; 39 (06) 1454-1460
  • 26 Dhar-Mascareño M, Cárcamo JM, Golde DW. Hypoxia-reoxygenation-induced mitochondrial damage and apoptosis in human endothelial cells are inhibited by vitamin C. Free Radic Biol Med 2005; 38 (10) 1311-1322
  • 27 Lowes DA, Webster NR, Galley HF. Dehydroascorbic acid as pre-conditioner: protection from lipopolysaccharide induced mitochondrial damage. Free Radic Res 2010; 44 (03) 283-292
  • 28 Mantzarlis K, Tsolaki V, Zakynthinos E. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies. Oxid Med Cell Longev 2017; 2017: 5985209
  • 29 Cárcamo JM, Pedraza A, Bórquez-Ojeda O, Golde DW. Vitamin C suppresses TNF alpha-induced NF kappa B activation by inhibiting I kappa B alpha phosphorylation. Biochemistry 2002; 41 (43) 12995-13002
  • 30 Liu SF, Malik AB. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 2006; 290 (04) L622-L645
  • 31 Faure E, Equils O, Sieling PA. et al. Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 2000; 275 (15) 11058-11063
  • 32 Gokce N, Keaney Jr JF, Frei B. et al. Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1999; 99 (25) 3234-3240
  • 33 McNeish AJ, Wilson WS, Martin W. Ascorbate blocks endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation in the bovine ciliary vascular bed and rat mesentery. Br J Pharmacol 2002; 135 (07) 1801-1809
  • 34 May JM. How does ascorbic acid prevent endothelial dysfunction?. Free Radic Biol Med 2000; 28 (09) 1421-1429
  • 35 Armour J, Tyml K, Lidington D, Wilson JX. Ascorbate prevents microvascular dysfunction in the skeletal muscle of the septic rat. J Appl Physiol (1985) 2001; 90 (03) 795-803
  • 36 Wu F, Wilson JX, Tyml K. Ascorbate inhibits iNOS expression and preserves vasoconstrictor responsiveness in skeletal muscle of septic mice. Am J Physiol Regul Integr Comp Physiol 2003; 285 (01) R50-R56
  • 37 Wu F, Wilson JX, Tyml K. Ascorbate protects against impaired arteriolar constriction in sepsis by inhibiting inducible nitric oxide synthase expression. Free Radic Biol Med 2004; 37 (08) 1282-1289
  • 38 Carr AC, Shaw GM, Fowler AA, Natarajan R. Ascorbate-dependent vasopressor synthesis: a rationale for vitamin C administration in severe sepsis and septic shock?. Crit Care 2015; 19: 418
  • 39 Eipper BA, Mains RE. The role of ascorbate in the biosynthesis of neuroendocrine peptides. Am J Clin Nutr 1991; 54 (6, Suppl): 1153S-1156S
  • 40 Dillon PF, Root-Bernstein RS, Lieder CM. Antioxidant-independent ascorbate enhancement of catecholamine-induced contractions of vascular smooth muscle. Am J Physiol Heart Circ Physiol 2004; 286 (06) H2353-H2360
  • 41 Lahiri S, Lloyd BB. The effect of stress and corticotrophin on the concentrations of vitamin C in blood and tissues of the rat. Biochem J 1962; 84: 478-483
  • 42 Padayatty SJ, Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis 2016; 22 (06) 463-493
  • 43 Levine M. New concepts in the biology and biochemistry of ascorbic acid. N Engl J Med 1986; 314 (14) 892-902
  • 44 Plevin D, Galletly C. The neuropsychiatric effects of vitamin C deficiency: a systematic review. BMC Psychiatry 2020; 20 (01) 315
  • 45 Travica N, Ried K, Sali A, Scholey A, Hudson I, Pipingas A. Vitamin C status and cognitive function: a systematic review. Nutrients 2017; 9 (09) 9
  • 46 Hemilä H. Vitamin C supplementation and the common cold– –was Linus Pauling right or wrong? . J Int Vitam Nutr Res 1997; 67: 329-335
  • 47 Douglas RM, Hemilä H, Chalker E, Treacy B. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev 2007; (03) CD000980
  • 48 Heimer KA, Hart AM, Martin LG, Rubio-Wallace S. Examining the evidence for the use of vitamin C in the prophylaxis and treatment of the common cold. J Am Acad Nurse Pract 2009; 21 (05) 295-300
  • 49 Ran L, Zhao W, Wang J. et al. Extra dose of vitamin C based on a daily supplementation shortens the common cold: a meta-analysis of 9 randomized controlled trials. BioMed Res Int 2018; 2018: 1837634
  • 50 Kahn SA, Beers RJ, Lentz CW. Resuscitation after severe burn injury using high-dose ascorbic acid: a retrospective review. J Burn Care Res 2011; 32 (01) 110-117
  • 51 Blaszczak W, Barczak W, Masternak J, Kopczyński P, Zhitkovich A, Rubiś B. Vitamin C as a modulator of the response to cancer therapy. Molecules 2019; 24 (03) 24
  • 52 Nauman G, Gray JC, Parkinson R, Levine M, Paller CJ. Systematic review of intravenous ascorbate in cancer clinical trials. Antioxidants 2018; 7 (07) 7
  • 53 Hu X, Yuan L, Wang H. et al. Efficacy and safety of vitamin C for atrial fibrillation after cardiac surgery: a meta-analysis with trial sequential analysis of randomized controlled trials. Int J Surg 2017; 37: 58-64
  • 54 Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev 2013; (01) CD000980
  • 55 Padayatty SJ, Sun AY, Chen Q, Espey MG, Drisko J, Levine M. Vitamin C: intravenous use by complementary and alternative medicine practitioners and adverse effects. PLoS One 2010; 5 (07) e11414
  • 56 Hemilä H, Chalker E. Vitamin C can shorten the length of stay in the ICU: a meta-analysis. Nutrients 2019; 11 (04) 11
  • 57 Lumlertgul N, Siribamrungwong M, Jaber BL, Susantitaphong P. Secondary oxalate nephropathy: a systematic review. Kidney Int Rep 2018; 3 (06) 1363-1372
  • 58 Lamarche J, Nair R, Peguero A, Courville C. Vitamin C-induced oxalate nephropathy. Int J Nephrol 2011; 2011: 146927
  • 59 Asplin JR. Hyperoxaluric calcium nephrolithiasis. Endocrinol Metab Clin North Am 2002; 31 (04) 927-949
  • 60 Buehner M, Pamplin J, Studer L. et al. Oxalate nephropathy after continuous infusion of high-dose vitamin C as an adjunct to burn resuscitation. J Burn Care Res 2016; 37 (04) e374-e379
  • 61 Lawton JM, Conway LT, Crosson JT, Smith CL, Abraham PA. Acute oxalate nephropathy after massive ascorbic acid administration. Arch Intern Med 1985; 145 (05) 950-951
  • 62 de Grooth HJ, Manubulu-Choo WP, Zandvliet AS. et al. Vitamin C pharmacokinetics in critically ill patients: a randomized trial of four IV regimens. Chest 2018; 153 (06) 1368-1377
  • 63 Stephenson CM, Levin RD, Spector T, Lis CG. Phase I clinical trial to evaluate the safety, tolerability, and pharmacokinetics of high-dose intravenous ascorbic acid in patients with advanced cancer. Cancer Chemother Pharmacol 2013; 72 (01) 139-146
  • 64 Prier M, Carr AC, Baillie N. No reported renal stones with intravenous vitamin C administration: a prospective case series study. Antioxidants (Basel) 2018; 7 (05) 68
  • 65 Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest 2017; 151 (06) 1229-1238
  • 66 Tanaka H, Matsuda T, Miyagantani Y, Yukioka T, Matsuda H, Shimazaki S. Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study. Arch Surg 2000; 135 (03) 326-331
  • 67 Fowler III AA, Syed AA, Knowlson S. et al; Medical Respiratory Intensive Care Unit Nursing. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med 2014; 12: 32
  • 68 Nathens AB, Neff MJ, Jurkovich GJ. et al. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg 2002; 236 (06) 814-822
  • 69 Sartor Z, Kesey J, Dissanaike S. The effects of intravenous vitamin C on point-of-care glucose monitoring. J Burn Care Res 2015; 36 (01) 50-56
  • 70 Hager DN, Martin GS, Sevransky JE, Hooper MH. Glucometry when using vitamin C in sepsis: a note of caution. Chest 2018; 154 (01) 228-229
  • 71 Campbell Jr GD, Steinberg MH, Bower JD. Letter: Ascorbic acid-induced hemolysis in G-6-PD deficiency. Ann Intern Med 1975; 82 (06) 810
  • 72 Mehta JB, Singhal SB, Mehta BC. Ascorbic-acid-induced haemolysis in G-6-PD deficiency. Lancet 1990; 336 (8720): 944
  • 73 Rees DC, Kelsey H, Richards JD. Acute haemolysis induced by high dose ascorbic acid in glucose-6-phosphate dehydrogenase deficiency. BMJ 1993; 306 (6881): 841-842
  • 74 Bendavid I, Singer P, Theilla M. et al. NutritionDay ICU: A 7 year worldwide prevalence study of nutrition practice in intensive care. Clin Nutr 2017; 36 (04) 1122-1129
  • 75 De Waele E, Malbrain MLNG, Spapen H. Nutrition in sepsis: a bench-to-bedside review. Nutrients 2020; 12 (02) 12
  • 76 Kamel AY, Dave NJ, Zhao VM, Griffith DP, Connor Jr MJ, Ziegler TR. Micronutrient alterations during continuous renal replacement therapy in critically ill adults: a retrospective study. Nutr Clin Pract 2018; 33 (03) 439-446
  • 77 Seno T, Inoue N, Matsui K. et al. Functional expression of sodium-dependent vitamin C transporter 2 in human endothelial cells. J Vasc Res 2004; 41 (04) 345-351
  • 78 Schorah CJ, Downing C, Piripitsi A. et al. Total vitamin C, ascorbic acid, and dehydroascorbic acid concentrations in plasma of critically ill patients. Am J Clin Nutr 1996; 63 (05) 760-765
  • 79 Nielsen TK, Højgaard M, Andersen JT, Poulsen HE, Lykkesfeldt J, Mikines KJ. Elimination of ascorbic acid after high-dose infusion in prostate cancer patients: a pharmacokinetic evaluation. Basic Clin Pharmacol Toxicol 2015; 116 (04) 343-348
  • 80 Marik PE. Vitamin C for the treatment of sepsis: the scientific rationale. Pharmacol Ther 2018; 189: 63-70
  • 81 Long CL, Maull KI, Krishnan RS. et al. Ascorbic acid dynamics in the seriously ill and injured. J Surg Res 2003; 109 (02) 144-148
  • 82 Fuller RN, Henson EC, Shannon EL, Collins AD, Brunson JG. Vitamin C deficiency and susceptibility to endotoxin shock in guinea pigs. Arch Pathol 1971; 92 (04) 239-243
  • 83 Fisher BJ, Kraskauskas D, Martin EJ. et al. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am J Physiol Lung Cell Mol Physiol 2012; 303 (01) L20-L32
  • 84 Tyml K, Li F, Wilson JX. Delayed ascorbate bolus protects against maldistribution of microvascular blood flow in septic rat skeletal muscle. Crit Care Med 2005; 33 (08) 1823-1828
  • 85 Dubick MA, Williams C, Elgjo GI, Kramer GC. High-dose vitamin C infusion reduces fluid requirements in the resuscitation of burn-injured sheep. Shock 2005; 24 (02) 139-144
  • 86 Barabutis N, Khangoora V, Marik PE, Catravas JD. Hydrocortisone and ascorbic acid synergistically prevent and repair lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Chest 2017; 152 (05) 954-962
  • 87 Zabet MH, Mohammadi M, Ramezani M, Khalili H. Effect of high-dose ascorbic acid on vasopressor's requirement in septic shock. J Res Pharm Pract 2016; 5 (02) 94-100
  • 88 Nabil Habib T, Ahmed I. Early adjuvant intravenous vitamin C treatment in septic shock may resolve the vasopressor dependence. Int J Microbiol Adv Immunol 2017; 5: 77-81
  • 89 Frank RA, Leeper FJ, Luisi BF. Structure, mechanism and catalytic duality of thiamine-dependent enzymes. Cell Mol Life Sci 2007; 64 (7–8): 892-905
  • 90 Donnino MW, Carney E, Cocchi MN. et al. Thiamine deficiency in critically ill patients with sepsis. J Crit Care 2010; 25 (04) 576-581
  • 91 Donnino MW, Andersen LW, Chase M. et al; Center for Resuscitation Science Research Group. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Crit Care Med 2016; 44 (02) 360-367
  • 92 Sidhu H, Gupta R, Thind SK, Nath R. Oxalate metabolism in thiamine-deficient rats. Ann Nutr Metab 1987; 31 (06) 354-361
  • 93 Fogarty A, Lewis SA, Scrivener SL. et al. Corticosteroid sparing effects of vitamin C and magnesium in asthma: a randomised trial. Respir Med 2006; 100 (01) 174-179
  • 94 Rhodes A, Evans LE, Alhazzani W. et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017; 43 (03) 304-377
  • 95 Okamoto K, Tanaka H, Makino Y, Makino I. Restoration of the glucocorticoid receptor function by the phosphodiester compound of vitamins C and E, EPC-K1 (L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6-yl hydrogen phosphate] potassium salt), via a redox-dependent mechanism. Biochem Pharmacol 1998; 56 (01) 79-86
  • 96 Fujita I, Hirano J, Itoh N, Nakanishi T, Tanaka K. Dexamethasone induces sodium-dependant vitamin C transporter in a mouse osteoblastic cell line MC3T3-E1. Br J Nutr 2001; 86 (02) 145-149
  • 97 Møller MH, Laake JH, Myburgh JA, Alhazzani W, Perner A. The magic bullet in sepsis or the inflation of chance findings?. Chest 2017; 152 (01) 222-223
  • 98 Walter JM, Singer BD. Vitamin C and sepsis: framing the postpublication discussion. Chest 2017; 152 (04) 904-905
  • 99 Fujii T, Luethi N, Young PJ. et al; VITAMINS Trial Investigators. Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock: the VITAMINS randomized clinical trial. JAMA 2020; 323 (05) 423-431
  • 100 Iglesias J, Vassallo AV, Patel VV, Sullivan JB, Cavanaugh J, Elbaga Y. Outcomes of metabolic resuscitation using ascorbic acid, thiamine, and glucocorticoids in the early treatment of sepsis: the ORANGES trial. Chest 2020; 158 (01) 164-173
  • 101 Wani SJ, Mufti SA, Jan RA. et al. Combination of vitamin C, thiamine and hydrocortisone added to standard treatment in the management of sepsis: results from an open label randomised controlled clinical trial and a review of the literature. Infect Dis (Lond) 2020; 52 (04) 271-278
  • 102 Chang P, Liao Y, Guan J. et al. Combined treatment with hydrocortisone, vitamin C, and thiamine for sepsis and septic shock: a randomized controlled trial. Chest 2020; 158 (01) 174-182
  • 103 Moskowitz A, Huang DT, Hou PC. et al; ACTS Clinical Trial Investigators. Effect of ascorbic acid, corticosteroids, and thiamine on organ injury in septic shock: the ACTS randomized clinical trial. JAMA 2020; 324 (07) 642-650
  • 104 Hwang SY, Ryoo SM, Park JE. et al; Korean Shock Society (KoSS). Combination therapy of vitamin C and thiamine for septic shock: a multi-centre, double-blinded randomized, controlled study. Intensive Care Med 2020; 46 (11) 2015-2025
  • 105 Mohamed ZU, Prasannan P, Moni M. et al. Vitamin C Therapy for Routine Care in Septic Shock (ViCTOR) trial: effect of intravenous vitamin C, thiamine, and hydrocortisone administration on inpatient mortality among patients with septic shock. Indian J Crit Care Med 2020; 24 (08) 653-661
  • 106 Sevransky JE, Rothman RE, Hager DN. et al; VICTAS Investigators. Effect of vitamin C, thiamine, and hydrocortisone on ventilator- and vasopressor-free days in patients with sepsis: the VICTAS randomized clinical trial. JAMA 2021; 325 (08) 742-750
  • 107 Fowler III AA, Truwit JD, Hite RD. et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. JAMA 2019; 322 (13) 1261-1270
  • 108 Shin TG, Kim YJ, Ryoo SM. et al. Early vitamin C and thiamine administration to patients with septic shock in emergency departments: propensity score-based analysis of a before-and-after cohort study. J Clin Med 2019; 8 (01) 8
  • 109 Mitchell AB, Ryan TE, Gillion AR, Wells LD, Muthiah MP. Vitamin C and thiamine for sepsis and septic shock. Am J Med 2020; 133 (05) 635-638
  • 110 Long MT, Kory P, Marik P. Vitamin C, hydrocortisone, and thiamine for septic shock. JAMA 2020; 323 (21) 2203-2204
  • 111 Fujii T, Udy AA, Bellomo R. Vitamin C, hydrocortisone, and thiamine for septic shock-in reply. JAMA 2020; 323 (21) 2204-2205
  • 112 de Grooth HJ, Elbers PWG, Vincent JL. Vitamin C for sepsis and acute respiratory failure. JAMA 2020; 323 (08) 792
  • 113 Fowler III AA, Fisher BJ, Kashiouris MG. Vitamin C for sepsis and acute respiratory failure-reply. JAMA 2020; 323 (08) 792-793
  • 114 Hemilä H, Chalker E. Vitamin C may reduce the duration of mechanical ventilation in critically ill patients: a meta-regression analysis. J Intensive Care 2020; 8: 15
  • 115 Langlois PL, Manzanares W, Adhikari NKJ. et al. Vitamin C administration to the critically ill: a systematic review and meta-analysis. JPEN J Parenter Enteral Nutr 2019; 43 (03) 335-346
  • 116 Zhang M, Jativa DF. Vitamin C supplementation in the critically ill: a systematic review and meta-analysis. SAGE Open Med 2018; 6: 2050312118807615
  • 117 Wei XB, Wang ZH, Liao XL. et al. Efficacy of vitamin C in patients with sepsis: an updated meta-analysis. Eur J Pharmacol 2020; 868: 172889
  • 118 Scholz SS, Borgstedt R, Ebeling N, Menzel LC, Jansen G, Rehberg S. Mortality in septic patients treated with vitamin C: a systematic meta-analysis. Crit Care 2021; 25 (01) 17
  • 119 Zayed Y, Alzghoul BN, Banifadel M. et al. Vitamin C, thiamine, and hydrocortisone in the treatment of sepsis: a meta-analysis and trial sequential analysis of randomized controlled trials. J Intensive Care Med 2021; (e-pub ahead of print) DOI: 10.1177/0885066620987809.
  • 120 Ge Z, Huang J, Liu Y. et al. Thiamine combined with vitamin C in sepsis or septic shock: a systematic review and meta-analysis. Eur J Emerg Med 2021; 28 (03) 189-195
  • 121 Feng F, Yang H, Yang W, Li M, Chang X, Chen Y. Effect of vitamin C in critically ill patients with sepsis and septic shock: a meta-analysis. Sci Prog 2021; 104 (01) 36850421998175
  • 122 Carr AC. Vitamin C administration in the critically ill: a summary of recent meta-analyses. Crit Care 2019; 23 (01) 265
  • 123 ClinicalTrials.gov. Randomized, Embedded, Multifactorial Adaptive Platform Trial for Community- Acquired Pneumonia (REMAP-CAP). Accessed July 27, 2021 at: https://clinicaltrials.gov/ct2/show/NCT02735707
  • 124 Masse MH, Ménard J, Sprague S. et al; Canadian Critical Care Trials Group. Lessening Organ Dysfunction With VITamin C(LOVIT): protocol for a randomized controlled trial. 2020; 21 (01) 42