J Knee Surg 2020; 33(12): 1187-1200
DOI: 10.1055/s-0040-1721053
Special Focus Section

Management of Large Focal Chondral and Osteochondral Defects in the Knee

1   Department of Orthopaedic Surgery, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio
,
Taylor Ray
2   Department of Orthopaedic Surgery, Stanford University Medical Center, Palo Alto, California
,
Seth L. Sherman
2   Department of Orthopaedic Surgery, Stanford University Medical Center, Palo Alto, California
,
Jack Farr
3   Knee Preservation and Cartilage Restoration Center, OrthoIndy, Indianapolis, Indiana
› Author Affiliations

Abstract

Large, focal articular cartilage defects of the knee (> 4 cm2) can be a source of significant morbidity and often require surgical intervention. Patient- and lesion-specific factors must be identified when evaluating a patient with an articular cartilage defect. In the management of large cartilage defects, the two classically utilized cartilage restoration procedures are osteochondral allograft (OCA) transplantation and cell therapy, or autologous chondrocyte implantation (ACI). Alternative techniques that are available or currently in clinical trials include a hyaluronan-based scaffold plus bone marrow aspirate concentrate, a third-generation autologous chondrocyte implant, and an aragonite-based scaffold. In this review, we will focus on OCA and ACI as the mainstay in management of large chondral and osteochondral defects of the knee. We will discuss the techniques and associated clinical outcomes for each, while including a brief mention of alternative treatments. Overall, cartilage restoration techniques have yielded favorable clinical outcomes and can be successfully employed to treat these challenging large focal lesions.



Publication History

Received: 28 May 2020

Accepted: 17 October 2020

Article published online:
01 December 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Moyad TF. Cartilage injuries in the adult knee: evaluation and management. Cartilage 2011; 2 (03) 226-236
  • 2 Guettler JH, Demetropoulos CK, Yang KH, Jurist KA. Osteochondral defects in the human knee: influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage. Am J Sports Med 2004; 32 (06) 1451-1458
  • 3 Shirazi R, Shirazi-Adl A. Computational biomechanics of articular cartilage of human knee joint: effect of osteochondral defects. J Biomech 2009; 42 (15) 2458-2465
  • 4 Gomoll AH, Farr J, Gillogly SD, Kercher J, Minas T. Surgical management of articular cartilage defects of the knee. J Bone Joint Surg Am 2010; 92 (14) 2470-2490
  • 5 Campbell AB, Knopp MV, Kolovich GP. et al. Preoperative MRI underestimates articular cartilage defect size compared with findings at arthroscopic knee surgery. Am J Sports Med 2013; 41 (03) 590-595
  • 6 Campbell AB, Quatman CE, Schmitt LC, Knopp MV, Flanigan DC. Is magnetic resonance imaging assessment of the size of articular cartilage defects accurate?. J Knee Surg 2014; 27 (01) 67-75
  • 7 Friemert B, Oberländer Y, Schwarz W. et al. Diagnosis of chondral lesions of the knee joint: can MRI replace arthroscopy? A prospective study. Knee Surg Sports Traumatol Arthrosc 2004; 12 (01) 58-64
  • 8 Czitrom AA, Keating S, Gross AE. The viability of articular cartilage in fresh osteochondral allografts after clinical transplantation. J Bone Jt Surg Ser A 1990; 72 (04) 574-581
  • 9 Tirico LEP, Bugbee WD. Osteochondral allograft. In: Farr J, Gomoll AH. eds. Cartilage Restoration. 2nd ed.. Cham: Springer International Publishing; 2018: 245-255
  • 10 Calcei JG, Rodeo SA. Orthobiologics for bone healing. Clin Sports Med 2019; 38 (01) 79-95
  • 11 Farr J, Gomoll AH. 2016 barriers to cartilage restoration. J Clin Orthop Trauma 2016; 7 (03) 183-186
  • 12 Ball ST, Amiel D, Williams SK. et al. The effects of storage on fresh human osteochondral allografts. Clin Orthop Relat Res 2004; (418) 246-252
  • 13 Williams SK, Amiel D, Ball ST. et al. Prolonged storage effects on the articular cartilage of fresh human osteochondral allografts. J Bone Jt Surg Ser A 2003; 85 (11) 2111-2120
  • 14 Schmidt KJ, Tírico LE, McCauley JC, Bugbee WD. Fresh osteochondral allograft transplantation: is graft storage time associated with clinical outcomes and graft survivorship?. Am J Sports Med 2017; 45 (10) 2260-2266
  • 15 Garretson III RB, Katolik LI, Verma N, Beck PR, Bach BR, Cole BJ. Contact pressure at osteochondral donor sites in the patellofemoral joint. Am J Sports Med 2004; 32 (04) 967-974
  • 16 Bernstein DT, O'Neill CA, Kim RS. et al. Osteochondral allograft donor-host matching by the femoral condyle radius of curvature. Am J Sports Med 2017; 45 (02) 403-409
  • 17 Sechriest V, Cole BJ, Bugbee W. Osteochondral allograft transplantation. In: Sgaglione N, Lubowitz J, Provencher M. eds. The Knee: AANA Advanced Arthroscopic Surgical Techniques. 1st ed.. Thorofare, NJ: Slack Incorporated; 2016: 243-255
  • 18 Hunt HE, Sadr K, Deyoung AJ, Gortz S, Bugbee WD. The role of immunologic response in fresh osteochondral allografting of the knee. Am J Sports Med 2014; 42 (04) 886-891
  • 19 Borazjani BH, Chen AC, Bae WC. et al. Effect of impact on chondrocyte viability during insertion of human osteochondral grafts. J Bone Joint Surg Am 2006; 88 (09) 1934-1943
  • 20 Koh JL, Wirsing K, Lautenschlager E, Zhang L-O. The effect of graft height mismatch on contact pressure following osteochondral grafting: a biomechanical study. Am J Sports Med 2004; 32 (02) 317-320
  • 21 Assenmacher AT, Pareek A, Reardon PJ, Macalena JA, Stuart MJ, Krych AJ. Long-term outcomes after osteochondral allograft: a systematic review at long-term follow-up of 12.3 years. Arthroscopy 2016; 32 (10) 2160-2168
  • 22 Gross AE, Kim W, Las Heras F, Backstein D, Safir O, Pritzker KPH. Fresh osteochondral allografts for posttraumatic knee defects: long-term followup. Clin Orthop Relat Res 2008; 466 (08) 1863-1870
  • 23 Briggs DT, Sadr KN, Pulido PA, Bugbee WD. The use of osteochondral allograft transplantation for primary treatment of cartilage lesions in the knee. Cartilage 2015; 6 (04) 203-207
  • 24 Krych AJ, Robertson CM, Williams III RJ. Cartilage Study Group. Return to athletic activity after osteochondral allograft transplantation in the knee. Am J Sports Med 2012; 40 (05) 1053-1059
  • 25 Nielsen ES, McCauley JC, Pulido PA, Bugbee WD. Return to sport and recreational activity after osteochondral allograft transplantation in the knee. Am J Sports Med 2017; 45 (07) 1608-1614
  • 26 Shasha N, Aubin PP, Cheah HK, Davis AM, Agnidis Z, Gross AE. Long-term clinical experience with fresh osteochondral allografts for articular knee defects in high demand patients. Cell Tissue Bank 2002; 3 (03) 175-182
  • 27 Thomas D, Shaw KA, Waterman BR. Outcomes after fresh osteochondral allograft transplantation for medium to large chondral defects of the knee. Orthop J Sports Med 2019; 7 (03) 2325967119832299
  • 28 Crawford ZT, Schumaier AP, Glogovac G, Grawe BM. Return to sport and sports-specific outcomes after osteochondral allograft transplantation in the knee: a systematic review of studies with at least 2 years' mean follow-up. Arthrosc J Arthrosc Relat Surg 2019; 35 (06) 1880-1889
  • 29 Krych AJ, Pareek A, King AH, Johnson NR, Stuart MJ, Williams III RJ. Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 2017; 25 (10) 3186-3196
  • 30 McCarthy MA, Meyer MA, Weber AE. et al. Can competitive athletes return to high-level play after osteochondral allograft transplantation of the knee? Arthrosc. J Arthrosc Relat Surg 2017; 33 (09) 1712-1717
  • 31 Shaha JS, Cook JB, Rowles DJ, Bottoni CR, Shaha SH, Tokish JM. Return to an athletic lifestyle after osteochondral allograft transplantation of the knee. Am J Sports Med 2013; 41 (09) 2083-2089
  • 32 Gobbi A, Scotti C, Lane JG, Peretti GM. Fresh osteochondral allografts in the knee: only a salvage procedure?. Ann Transl Med 2015; 3 (12) 164
  • 33 Gracitelli GC, Meric G, Pulido PA, McCauley JC, Bugbee WD. Osteochondral allograft transplantation for knee lesions after failure of cartilage repair surgery. Cartilage 2015; 6 (02) 98-105
  • 34 Gracitelli GC, Meric G, Briggs DT. et al. Fresh osteochondral allografts in the knee: comparison of primary transplantation versus transplantation after failure of previous subchondral marrow stimulation. Am J Sports Med 2015; 43 (04) 885-891
  • 35 Familiari F, Cinque ME, Chahla J. et al. Clinical outcomes and failure rates of osteochondral allograft transplantation in the knee: a systematic review. Am J Sports Med 2018; 46 (14) 3541-3549
  • 36 Cotter EJ, Hannon CP, Christian DR. et al. Clinical outcomes of multifocal osteochondral allograft transplantation of the knee: an analysis of overlapping grafts and multifocal lesions. Am J Sports Med 2018; 46 (12) 2884-2893
  • 37 Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A. A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 2006; 13 (03) 203-210
  • 38 Samuelson EM, Brown DE. Cost-effectiveness analysis of autologous chondrocyte implantation: a comparison of periosteal patch versus type I/III collagen membrane. Am J Sports Med 2012; 40 (06) 1252-1258
  • 39 MACI, U.S. Food & Drug Administration. Available at: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/maci-autologous-cultured-chondrocytes-porcine-collagen-membrane. Accessed August 4, 2020
  • 40 Hinckel BB, Gomoll AH. Autologous chondrocytes and next-generation matrix-based autologous chondrocyte implantation. Clin Sports Med 2017; 36 (03) 525-548
  • 41 Hinckel BB, Gomoll AH. Patellofemoral cartilage restoration: indications, techniques, and outcomes of autologous chondrocytes implantation, matrix-induced chondrocyte implantation, and particulated juvenile allograft cartilage. J Knee Surg 2018; 31 (03) 212-226
  • 42 Minas T, Ogura T, Headrick J, Bryant T. Autologous chondrocyte implantation “sandwich” technique compared with autologous bone grafting for deep osteochondral lesions in the knee. Am J Sports Med 2018; 46 (02) 322-332
  • 43 Ogura T, Merkely G, Bryant T, Winalski CS, Minas T. Autologous chondrocyte implantation “segmental-sandwich” technique for deep osteochondral defects in the knee: clinical outcomes and correlation with magnetic resonance imaging findings. Orthop J Sports Med 2019; 7 (05) 2325967119847173
  • 44 Gomoll AH, Farr J. Autologous chondrocyte implantation (ACI). Cartilage Restoration. Cham: Springer International Publishing; 2018: 265-274
  • 45 Saris D, Price A, Widuchowski W. SUMMIT study group. et al; Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med 2014; 42 (06) 1384-1394
  • 46 Brittberg M, Recker D, Ilgenfritz J, Saris DBF. SUMMIT Extension Study Group. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am J Sports Med 2018; 46 (06) 1343-1351
  • 47 Gou GH, Tseng FJ, Wang SH. et al. Autologous chondrocyte implantation versus microfracture in the knee: a meta-analysis and systematic review. Arthrosc J Arthrosc Relat Surg 2020; 36 (01) 289-303
  • 48 Ebert JR, Fallon M, Wood DJ, Janes GC. A prospective clinical and radiological evaluation at 5 years after arthroscopic matrix-induced autologous chondrocyte implantation. Am J Sports Med 2017; 45 (01) 59-69
  • 49 Marlovits S, Aldrian S, Wondrasch B. et al. Clinical and radiological outcomes 5 years after matrix-induced autologous chondrocyte implantation in patients with symptomatic, traumatic chondral defects. Am J Sports Med 2012; 40 (10) 2273-2280
  • 50 Aldrian S, Zak L, Wondrasch B. et al. Clinical and radiological long-term outcomes after matrix-induced autologous chondrocyte transplantation: a prospective follow-up at a minimum of 10 years. Am J Sports Med 2014; 42 (11) 2680-2688
  • 51 Ebert JR, Schneider A, Fallon M, Wood DJ, Janes GC. A comparison of 2-year outcomes in patients undergoing tibiofemoral or patellofemoral matrix-induced autologous chondrocyte implantation. Am J Sports Med 2017; 45 (14) 3243-3253
  • 52 Samsudin EZ, Kamarul T. The comparison between the different generations of autologous chondrocyte implantation with other treatment modalities: a systematic review of clinical trials. Knee Surg Sports Traumatol Arthrosc 2016; 24 (12) 3912-3926
  • 53 Lamplot JD, Schafer KA, Matava MJ. Treatment of failed articular cartilage reconstructive procedures of the knee: a systematic review. Orthop J Sports Med 2018; 6 (03) 2325967118761871
  • 54 Vijayan S, Bartlett W, Bentley G. et al. Autologous chondrocyte implantation for osteochondral lesions in the knee using a bilayer collagen membrane and bone graft: a two- to eight-year follow-up study. J Bone Joint Surg Br 2012; 94 (04) 488-492
  • 55 Zak L, Albrecht C, Wondrasch B. et al. Results 2 years after matrix-associated autologous chondrocyte transplantation using the Novocart 3D scaffold: an analysis of clinical and radiological data. Am J Sports Med 2014; 42 (07) 1618-1627
  • 56 Niethammer TR, Pietschmann MF, Horng A. et al. Graft hypertrophy of matrix-based autologous chondrocyte implantation: a two-year follow-up study of NOVOCART 3D implantation in the knee. Knee Surg Sports Traumatol Arthrosc 2014; 22 (06) 1329-1336
  • 57 Niethammer TR, Safi E, Ficklscherer A. et al. Graft maturation of autologous chondrocyte implantation: magnetic resonance investigation with T2 mapping. Am J Sports Med 2014; 42 (09) 2199-2204
  • 58 Niethammer TR, Valentin S, Gülecyüz MF. et al. Bone marrow edema in the knee and its influence on clinical outcome after matrix-based autologous chondrocyte implantation: Results after 3-year follow-up. Am J Sports Med 2015; 43 (05) 1172-1179
  • 59 Niethammer TR, Loitzsch A, Horng A. et al. Graft hypertrophy after third-generation autologous chondrocyte implantation has no correlation with reduced cartilage quality: matched-pair analysis using T2-weighted mapping. Am J Sports Med 2018; 46 (10) 2414-2421
  • 60 Müller PE, Gallik D, Hammerschmid F. et al. Third-generation autologous chondrocyte implantation after failed bone marrow stimulation leads to inferior clinical results. Knee Surg Sports Traumatol Arthrosc 2020; 28 (02) 470-477
  • 61 Kon E, Filardo G, Robinson D. et al. Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model. Knee Surg Sports Traumatol Arthrosc 2014; 22 (06) 1452-1464
  • 62 Kon E, Robinson D, Shani J. et al. Reconstruction of large osteochondral defects using a hemicondylar aragonite-based implant in a caprine model. Arthroscopy 2020; 36 (07) 1884-1894
  • 63 Kon E, Robinson D, Verdonk P. et al. A novel aragonite-based scaffold for osteochondral regeneration: early experience on human implants and technical developments. Injury 2016; 47 (Suppl. 06) S27-S32
  • 64 Chubinskaya S, Di Matteo B, Lovato L, Iacono F, Robinson D, Kon E. Agili-C implant promotes the regenerative capacity of articular cartilage defects in an ex vivo model. Knee Surg Sports Traumatol Arthrosc 2019; 27 (06) 1953-1964
  • 65 Agili-C™ IDE Clinical Study, CartiHeal. Available at: https://www.cartiheal.com/clinical-study/. Accessed May 6, 2020
  • 66 CartiHeal Announces Positive Interim Analysis Results of Agili-C™ IDE Study. Available at: https://www.cartiheal.com/news/cartiheal-announces-positive-interim-analysis-results-of-agili-c-ide-study/. Accessed May 6, 2020
  • 67 Gobbi A, Chaurasia S, Karnatzikos G, Nakamura N. Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions: a nonrandomized prospective trial. Cartilage 2015; 6 (02) 82-97
  • 68 Gobbi A, Scotti C, Karnatzikos G, Mudhigere A, Castro M, Peretti GM. One-step surgery with multipotent stem cells and hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc 2017; 25 (08) 2494-2501
  • 69 Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med 2016; 44 (11) 2846-2854
  • 70 Farr J, Cole BJ, Sherman S, Karas V. Particulated articular cartilage: CAIS and DeNovo NT. J Knee Surg 2012; 25 (01) 23-29
  • 71 Adkisson IV HD, Martin JA, Amendola RL. et al. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med 2010; 38 (07) 1324-1333
  • 72 Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med 2014; 42 (06) 1417-1425
  • 73 Wang T, Belkin NS, Burge AJ. et al. Patellofemoral cartilage lesions treated with particulated juvenile allograft cartilage: a prospective study with minimum 2-year clinical and magnetic resonance imaging outcomes. Arthroscopy 2018; 34 (05) 1498-1505
  • 74 Hinckel BB, Pratte EL, Baumann CA. et al. Patellofemoral cartilage restoration: a systematic review and meta-analysis of clinical outcomes. Am J Sports Med 2020; 48 (07) 1756-1772
  • 75 Cole BJ, Farr J, Winalski CS. et al. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med 2011; 39 (06) 1170-1179
  • 76 Gao L, Orth P, Cucchiarini M, Madry H. Autologous matrix-induced chondrogenesis: a systematic review of the clinical evidence. Am J Sports Med 2019; 47 (01) 222-231
  • 77 Gille J, Behrens P, Volpi P. et al. Outcome of Autologous Matrix Induced Chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC Registry. Arch Orthop Trauma Surg 2013; 133 (01) 87-93
  • 78 Schagemann J, Behrens P, Paech A. et al. Mid-term outcome of arthroscopic AMIC for the treatment of articular cartilage defects in the knee joint is equivalent to mini-open procedures. Arch Orthop Trauma Surg 2018; 138 (06) 819-825
  • 79 Farr J. Perforated allograft cartilage. Cartilage Restoration. Cham: Springer International Publishing; 2018: 257-263
  • 80 Vangsness Jr CT, Higgs G, Hoffman JK. et al. Implantation of a novel cryopreserved viable osteochondral allograft for articular cartilage repair in the knee. J Knee Surg 2018; 31 (06) 528-535
  • 81 Farr J, Gracitelli GC, Shah N, Chang EY, Gomoll AH. High failure rate of a decellularized osteochondral allograft for the treatment of cartilage lesions. Am J Sports Med 2016; 44 (08) 2015-2022
  • 82 Johnson CC, Johnson DJ, Garcia GH. et al. High short-term failure rate associated with decellularized osteochondral allograft for treatment of knee cartilage lesions. Arthrosc J Arthrosc Relat Surg 2017; 33 (12) 2219-2227