Synthesis 2022; 54(20): 4521-4528
DOI: 10.1055/s-0040-1719935
paper

α-Sulfenylation between 4-Hydroxydithiocoumarin and 1,3-Dicarbonyl Compounds: A Key Precursor for the Synthesis of New Pyrazole Derivatives

Santa Mondal
,
A. T. K. is highly indebted to the Department of Science and Technology, Ministry of Science and Technology (SERB), New Delhi for the financial support (research project Grant No.: CRG/2018/002120/OC). Ms. Santa Mondal is grateful to Indian Institute of Technology Guwahati (IIT Guwahati) for her research fellowship. The authors are also thankful to Ministry of Human Resource Development for 500 MHz NMR facility in the department (MHRD, Grant No. F. No. 5-5/2014-TS-VII). We duly acknowledge the Department of Science and Technology, Ministry of Science and Technology, New Delhi for providing 500 MHz NMR facility under the DST-FIST program (Sanction No. SR/FST/CS-II/2017/23C), and North East Centre for Biological Sciences and Healthcare Engineering, IIT Guwahati (Sanction No. BT/COE/34/SP28408/2018) for 400 MHz NMR facility.


Abstract

An efficient synthetic protocol for the α-sulfenylation of 1,3-dicarbonyl compounds is reported through a cross dehydrogenative coupling reaction with 4-hydroxydithiocoumarins in the presence of 10 mol% KI and 1 equiv. TBHP in toluene under reflux conditions. Some of the products are utilized for the synthesis of substituted new pyrazole derivatives on reaction with phenylhydrazine in ethanol at room temperature. In addition, α-benzylation is also achieved on treatment with benzyl bromide using K2CO3/CH3CN under mild conditions. The salient features of the present protocol are good yields, mild reaction conditions, shorter reaction time, no byproducts were formed (sulfoxide/sulfone), and no deacylation occurs during the process. In the present protocol, 4-hydroxydithiocoumarin is converted into a suitable electrophile through a radical substitution pathway, which undergoes ultimately C–S bond formation with 1,3-dicarbonyl compounds by a nucleophilic substitution reaction.

Supporting Information



Publication History

Received: 07 March 2022

Accepted after revision: 07 June 2022

Article published online:
05 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Miękus N, Marszałek K, Podlacha M, Iqbal A, Puchalski C, Świergiel AH. Molecules 2020; 25: 3804
    • 1b Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246
    • 2a Rouf R, Uddin SJ, Sarker DK, Islam MT, Ali ES, Shilpi JA, Nahar L, Tiralongo E, Sarker SD. Trends Food Sci. Technol. 2020; 104: 219
    • 2b Sorlozano-Puerto A, Albertuz-Crespo M, Lopez-Machado I, Gil-Martinez L, Ariza-Romero JJ, Maroto-Tello A, Baños-Arjona A, Gutierrez-Fernandez J. Pharmaceuticals 2021; 14 (21) 1
    • 2c Unangst PC, Connor DT, Stabler SR, Weikert RJ, Carethers ME, Kennedy JA, Thueson DO, Chestnut JC, Adolphson RL, Conroy MC. J. Med. Chem. 1989; 32: 1360
    • 3a Chauhan M, Kumar R. Bioorg. Med. Chem. 2013; 21: 5657
    • 3b Kumar V, Kaur K, Gupta GK, Sharma AK. Eur. J. Med. Chem. 2013; 69: 735
    • 3c Deng X, Mani NS. Org. Lett. 2008; 10: 1307
    • 3d Fustero S, Román R, Sanz-Cervera JF, Simón-Fuentes A, Cuñat AC, Villanova S, Murguía M. J. Org. Chem. 2008; 73: 3523
    • 3e Gerstenberger BS, Rauckhorst MR, Starr JT. Org. Lett. 2009; 11: 2097
    • 4a Wan C, Zhang J, Wang S, Fan J, Wang Z. Org. Lett. 2010; 12: 2338
    • 4b Turchi IJ, Dewar MJ. S. Chem. Rev. 1975; 75: 389
    • 4c Turchi IJ. Ind. Eng. Chem. Prod. Res. Dev. 1981; 20: 32
  • 5 Kljun J, Turel I. Eur. J. Inorg. Chem. 2017; 1655
    • 6a Christoffers J, Baro A, Werner T. Adv. Synth. Catal. 2004; 346: 143
    • 6b Schröder P, Bauer JO, Strohmann C, Kumar K, Waldmann H. J. Org. Chem. 2016; 81: 10242
    • 7a Gao W.-C, Zhao J.-J, Hu F, Chang H.-H, Li X, Wei W.-L. RSC Adv. 2015; 5: 25222
    • 7b Pan X.-J, Gao J, Yuan G.-Q. Tetrahedron 2015; 71: 5525
    • 7c Mulina OM, Pirgach DA, Nikishin GI, Terent’ev AO. Eur. J. Org. Chem. 2019; 4179
    • 7d Gao W.-C, Tian J, Shang Y.-Z, Jiang X. Chem. Sci. 2020; 11: 3903
  • 8 Jeschke P. Pest Manage. Sci. 2016; 72: 210
    • 9a McDougall JK. Arch. Gesamte Virusforsch. 1969; 27: 255
    • 9b Giles D, Prakash MS, Ramseshu KV. Cent. Eur. J. Chem. 2007; 4: 428
    • 10a Yoshida Z, Ogoshi H, Tokumitsu T. Tetrahedron 1970; 26: 2987
    • 10b Rashid MA, Reinke H, Langer P. Tetrahedron Lett. 2007; 48: 2321
  • 11 Varun BV, Gadde K, Prabhu KR. Org. Lett. 2015; 17: 2944
  • 12 Chen Q, Wang X, Wen C, Huang Y, Yan X, Zeng J. RSC Adv. 2017; 7: 39758
  • 13 Zou L.-H, Priebbenow DL, Wang L, Mottweiler J, Bolm C. Adv. Synth. Catal. 2013; 355: 2558
  • 14 Cao H, Yuan J, Liu C, Hu X, Lei A. RSC Adv. 2015; 5: 41493
  • 15 Jiang Y, Zou J.-X, Huang L.-T, Peng X, Deng J.-D, Zhu L.-Q, Yang Y.-H, Feng Y.-Y, Zhang X.-Y, Wang Z. Org. Biomol. Chem. 2018; 16: 1641
  • 16 Belal Md, Mondal S, Yashmin S, Khan AT. Org. Biomol. Chem. 2022; 20: 715
  • 17 Anderson-McKay JE, Liepa AJ. Aust. J. Chem. 1987; 40: 1179
  • 18 Wang H, Chen C, Liu W, Zhu Z. Beilstein J. Org. Chem. 2017; 13: 2023
  • 19 Aruri H, Singh U, Kumar S, Kushwaha M, Gupta AP, Vishwakarma RA, Pal Singh P. Org. Lett. 2016; 18: 3638
  • 20 Mahato K, Arora N, Bagdi PR, Gattu R, Ghosh SS, Khan AT. Chem. Commun. 2018; 54: 1513
  • 21 Naim MJ, Alam O, Nawaz F, Alam MJ, Alam P. J. Pharm. BioAllied Sci. 2016; 8: 2