Synthesis 2022; 54(18): 4015-4024
DOI: 10.1055/s-0040-1719927
paper

Comparison of Various Tosylating Reagents for the Synthesis of Mono-2-O-tosyl-β-cyclodextrin

,
Nikoletta-Melina Konstantinou
,


Abstract

Mono-2-O-tosyl-β-cyclodextrin is a key compound, as starting material, for the preparation of multifunctional systems in supramolecular chemistry. Although several methods are available in the literature for its synthesis, yields are always moderate (usually less than 42%) and reproducibility can be an issue as a result of the difficulties encountered in its preparation that are related to selectivity, monofunctionalization, solubility and purification, among others. A modification of a literature method was developed giving emphasis to simplicity and reproducibility and, for the first time, was tested with nine easily accessible tosylating reagents that differ significantly in their nature and reactivity. Product isolation was accomplished with precipitation followed by reverse-phase flash chromatography, which is easy to scale up. Interestingly, with the proposed method, all nine reagents can be successfully applied for the synthesis of the product with yields ranging from 33% to 40%. Optimum reaction times and temperatures were found and conclusions for each tosylating reagent are drawn.

Supporting Information



Publication History

Received: 14 March 2022

Accepted after revision: 22 April 2022

Article published online:
09 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Del Valle EM. M. Process Biochem. 2004; 39: 1033
    • 2a Gelb RI, Schwartz LM, Radeos M, Edmonds RB, Laufer DA. J. Am. Chem. Soc. 1982; 104: 6283
    • 2b Connors KA. Chem. Rev. 1997; 97: 1325
    • 2c Mura P. J. Pharm. Biomed. Anal. 2014; 101: 238
    • 2d Ryzhakov A, Do Thi T, Stappaerts J, Bertoletti L, Kimpe K, Sá Couto AR, Saokham P, Van den Mooter G, Augustijns P, Somsen GW, Kurkov S, Inghelbrecht S, Arien A, Jimidar MI, Schrijnemakers K, Loftsson T. J. Pharm. Sci. 2016; 105: 2556
  • 4 Khan AR, Forgo P, Stine KJ, D’Souza VT. Chem. Rev. 1998; 98: 1977
  • 5 Sallas F, Darcy R. Eur. J. Org. Chem. 2008; 957
    • 6a Řezanka M. Eur. J. Org. Chem. 2016; 5322
    • 6b Przybyla MA, Yilmaz G, Becer CR. Polym. Chem. 2020; 11: 7582
    • 7a Conceicao J, Adeoye O, Cabral-Marques HM, Lobo JM. S. Curr. Pharm. Des. 2018; 24: 1405
    • 7b Loftsson T, Brewster ME. J. Pharm. Sci. 1996; 85: 1017
    • 7c Letort S, Balieu S, Erb W, Gouhier G, Estour F. Beilstein J. Org. Chem. 2016; 12: 204
    • 7d Wei H, Yu C. Biomater. Sci. 2015; 3: 1050
    • 7e Yin J.-J, Shumyak SP, Burgess C, Zhou Z.-W, He Z.-X, Zhang X.-J, Pan S.-T, Yang T.-X, Duan W, Qiu J.-X, Zhou S.-F. Int. J. Nanomed. 2015; 10: 4717
    • 7f Martínez Á, Ortiz Mellet C, García Fernández JM. Chem. Soc. Rev. 2013; 42: 4746
    • 8a Macaev F, Boldescu V. Symmetry 2015; 7: 1699
    • 8b Řezanka P, Navrátilová K, Řezanka M, Král V, Sýkora D. Electrophoresis 2014; 35: 2701
    • 8c Ogoshi T, Harada A. Sensors 2008; 8: 4961
    • 8d Wenz G, Han BH, Müller A. Chem. Rev. 2006; 106: 782
  • 9 Ueno A, Breslow R. Tetrahedron Lett. 1982; 23: 3451
  • 10 Rong D, D’Souza VT. Tetrahedron Lett. 1990; 31: 4275
  • 11 Law H, Baussanne I, García Fernández JM, Defaye J. Carbohydr. Res. 2003; 338: 451
  • 12 Murakami T, Harata K, Morimoto S. Tetrahedron Lett. 1987; 28: 321
  • 13 Yu H, Teramoto A, Fukudome M, Xie R.-G, Yuan D.-Q, Fujita K. Tetrahedron Lett. 2006; 47: 8837
  • 14 Teranishi K, Watanabe K, Hisamatsu M, Yamada T. J. Carbohydr. Chem. 1998; 17: 489
  • 15 Wang Z.-Z, He G.-Y, Lu R.-H. Monatsh. Chem. 2008; 139: 1109
  • 16 Wang Z, Fu X, Dai G, Quan H. Monatsh. Chem. 2011; 142: 317
  • 17 Menuel S, Doumert B, Saitzek S, Ponchel A, Delevoye L, Monflier E, Hapiot F. J. Org. Chem. 2015; 80: 6259
    • 18a Petter RC, Salek JS, Sikorski CT, Kumaravel G, Lin FT. J. Am. Chem. Soc. 1990; 112: 3860
    • 18b Brown SE, Coates JH, Coghlan DR, Easton CJ, Vaneyk SJ, Janowski W, Lepore A, Lincoln SF, Luo Y, May BL, Schiesser DS, Wang P, Williams ML. Aust. J. Chem. 1993; 46: 953
    • 18c Byun H.-S, Zhong N, Bittman R. Org. Synth. 2000; 77: 225
    • 18d Kasal P, Jindřich J. Molecules 2021; 26: 5065
  • 19 Atkins PW, Weller MT, Hagerman ME, Overton T, Rourke J, Armstrong FA. Shriver & Atkins’ Inorganic Chemistry, 6th ed. W.H. Freeman & Company; New York: 2010
  • 20 Guthrie JP. Can. J. Chem. 1978; 56: 2342
    • 21a Espinosa S, Bosch E, Rosés M. J. Chromatogr., A 2002; 964: 55
    • 21b Izutsu K. IUPAC: Acid–Base Dissociation Constants in Dipolar Aprotic Solvents. Blackwell Scientific Publications; Oxford: 1990
  • 22 Garratt PJ. In Comprehensive Heterocyclic Chemistry II, vol 4. eds. A. R. Katritzky, C. W. Rees and E. F. V. Scriven Elsevier; Amsterdam: 1996: 127
  • 23 Katritzky AR, Ramsden CA, Joule JA, Zhdankin VV. Handbook of Heterocyclic Chemistry, 3rd ed.. 2010
    • 24a Tripodo G, Wischke C, Neffe AT, Lendlein A. Carbohydr. Res. 2013; 381: 59
    • 24b Raoov M, Mohamad S, Abas MR. Int. J. Mol. Sci. 2014; 15: 100
  • 25 Wang Z, Jiao W, He G, Lu R. Monatsh. Chem. 2009; 140: 79
  • 26 Holm SC, Straub BF. Org. Prep. Proced. Int. 2011; 43: 319
  • 27 Paulett GS, Lustig M. J. Am. Chem. Soc. 1965; 87: 1020
  • 28 Jiang T, Sukumaran DK, Soni S.-D, Lawrence DS. J. Org. Chem. 1994; 59: 5149
  • 29 Breslow R, Czarnik AW, Lauer M, Leppkes R, Winkler J, Zimmerman S. J. Am. Chem. Soc. 1986; 108: 1969
  • 30 Ngassa FN, Riley S, Atanasova TP, Ahmed AO, Kerr S, Cooley TA, Dawood IA. S, Austhof ER, Duran JR. J, Franklin M. Trends Org. Chem. 2017; 18: 1
  • 31 Stenfors BA, Staples RJ, Biros SM, Ngassa FN. Chemistry 2020; 2: 591
  • 32 Miranda EJ, McIntyre IM, Parker DR, Gary RD, Logan BK. J. Anal. Toxicol. 2006; 30: 219
  • 33 Katagiri N, Itakura K, Narang SA. J. Am. Chem. Soc. 1975; 97: 7332