Semin Respir Crit Care Med 2020; 41(02): 229-237
DOI: 10.1055/s-0040-1708054
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Familial Interstitial Lung Disease

Jonathan A. Kropski
1   Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
2   Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
3   U.S. Department of Veterans Affairs Medical Center, Nashville, Tennessee
› Author Affiliations
Further Information

Publication History

Publication Date:
12 April 2020 (online)

Abstract

The interstitial lung diseases (ILDs) are a group of progressive disorders characterized by chronic inflammation and/or fibrosis in the lung. While some ILDs can be linked to specific environmental causes (i.e., asbestosis, silicosis), in many individuals, no culprit exposure can be identified; these patients are deemed to have “idiopathic interstitial pneumonia” (IIP). Family history is now recognized as the strongest risk factor for IIP, and IIP cases that run in families comprise a syndrome termed “familial interstitial pneumonia” (FIP). Mutations in more than 10 different genes have been implicated as responsible for disease in FIP families. Diverse ILD clinical phenotypes can be seen within a family, and available evidence suggests underlying genetic risk is the primary determinant of disease outcomes. Together, these FIP studies have provided unique insights into the pathobiology of ILDs, and brought focus on the unique issues that arise in the care of patients with FIP.

 
  • References

  • 1 Travis WD, Costabel U, Hansell DM. , et al; ATS/ERS Committee on Idiopathic Interstitial Pneumonias. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 2013; 188 (06) 733-748
  • 2 Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis. N Engl J Med 2018; 378 (19) 1811-1823
  • 3 García-Sancho C, Buendía-Roldán I, Fernández-Plata MR. , et al. Familial pulmonary fibrosis is the strongest risk factor for idiopathic pulmonary fibrosis. Respir Med 2011; 105 (12) 1902-1907
  • 4 Steele MP, Speer MC, Loyd JE. , et al. Clinical and pathologic features of familial interstitial pneumonia. Am J Respir Crit Care Med 2005; 172 (09) 1146-1152
  • 5 Talbert JL, Schwartz DA. Pulmonary fibrosis, familial. In: Adam MP, Ardinger HH, Pagon RA. , et al., eds. GeneReviews®. Seattle (WA): University of Washington, Seattle; 2005
  • 6 Peabody JW, Peabody Jr JW, Hayes EW, Hayes Jr EW. Idiopathic pulmonary fibrosis; its occurrence in identical twin sisters. Dis Chest 1950; 18 (04) 330-344
  • 7 Beaumont F, Jansen HM, Elema JD, ten Kate LP, Sluiter HJ. Simultaneous occurrence of pulmonary interstitial fibrosis and alveolar cell carcinoma in one family. Thorax 1981; 36 (04) 252-258
  • 8 Solliday NH, Williams JA, Gaensler EA, Coutu RE, Carrington CB. Familial chronic interstitial pneumonia. Am Rev Respir Dis 1973; 108 (02) 193-204
  • 9 Swaye P, Van Ordstrand HS, McCormack LJ, Wolpaw SE. Familial Hamman-Rich syndrome. Report of eight cases. Dis Chest 1969; 55 (01) 7-12
  • 10 Hughes EW. Familial interstitial pulmonary fibrosis. Thorax 1964; 19: 515-525
  • 11 Marshall RP, Puddicombe A, Cookson WO, Laurent GJ. Adult familial cryptogenic fibrosing alveolitis in the United Kingdom. Thorax 2000; 55 (02) 143-146
  • 12 Hodgson U, Laitinen T, Tukiainen P. Nationwide prevalence of sporadic and familial idiopathic pulmonary fibrosis: evidence of founder effect among multiplex families in Finland. Thorax 2002; 57 (04) 338-342
  • 13 Loyd JE. Pulmonary fibrosis in families. Am J Respir Cell Mol Biol 2003; 29 (3, Suppl): S47-S50
  • 14 Fernandez BA, Fox G, Bhatia R. , et al. A Newfoundland cohort of familial and sporadic idiopathic pulmonary fibrosis patients: clinical and genetic features. Respir Res 2012; 13: 64
  • 15 Lee HY, Seo JB, Steele MP. , et al. High-resolution CT scan findings in familial interstitial pneumonia do not conform to those of idiopathic interstitial pneumonia. Chest 2012; 142 (06) 1577-1583
  • 16 Thomas AQ, Lane K, Phillips III J. , et al. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am J Respir Crit Care Med 2002; 165 (09) 1322-1328
  • 17 Nogee LM, Dunbar III AE, Wert SE, Askin F, Hamvas A, Whitsett JA. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med 2001; 344 (08) 573-579
  • 18 Armanios M. Telomerase mutations and the pulmonary fibrosis-bone marrow failure syndrome complex. N Engl J Med 2012; 367 (04) 384 , author reply 384
  • 19 Kropski JA, Young LR, Cogan JD. , et al. Genetic evaluation and testing of patients and families with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2017; 195 (11) 1423-1428
  • 20 El-Chemaly S, Young LR. Hermansky-Pudlak syndrome. Clin Chest Med 2016; 37 (03) 505-511
  • 21 Vicary GW, Vergne Y, Santiago-Cornier A, Young LR, Roman J. Pulmonary fibrosis in Hermansky-Pudlak syndrome. Ann Am Thorac Soc 2016; 13 (10) 1839-1846
  • 22 Hamvas A, Deterding RR, Wert SE. , et al. Heterogeneous pulmonary phenotypes associated with mutations in the thyroid transcription factor gene NKX2-1. Chest 2013; 144 (03) 794-804
  • 23 Nevel RJ, Garnett ET, Worrell JA. , et al. Persistent lung disease in adults with NKX2.1 mutation and familial neuroendocrine cell hyperplasia of infancy. Ann Am Thorac Soc 2016; 13 (08) 1299-1304
  • 24 Watkin LB, Jessen B, Wiszniewski W. , et al; Baylor-Hopkins Center for Mendelian Genomics. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat Genet 2015; 47 (06) 654-660
  • 25 Kropski JA, Lawson WE, Young LR, Blackwell TS. Genetic studies provide clues on the pathogenesis of idiopathic pulmonary fibrosis. Dis Model Mech 2013; 6 (01) 9-17
  • 26 Kropski JA, Mitchell DB, Markin C. , et al. A novel dyskerin (DKC1) mutation is associated with familial interstitial pneumonia. Chest 2014; 146 (01) e1-e7
  • 27 Zhang D, Zhou Z, Abu-Hijleh M, Batra K, Xing C, Garcia CK. Homozygous Rare PARN Missense Mutation in Familial Pulmonary Fibrosis. Am J Respir Crit Care Med 2019; 199 (06) 797-799
  • 28 Al-Mutairy EA, Imtiaz FA, Khalid M. , et al. An atypical pulmonary fibrosis is associated with co-inheritance of mutations in the calcium binding protein genes S100A3 and S100A13 . Eur Respir J 2019; 54 (01) 1802041
  • 29 Cogan JD, Kropski JA, Zhao M. , et al. Rare variants in RTEL1 are associated with familial interstitial pneumonia. Am J Respir Crit Care Med 2015; 191 (06) 646-655
  • 30 Stuart BD, Choi J, Zaidi S. , et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat Genet 2015; 47 (05) 512-517
  • 31 Petrovski S, Todd JL, Durheim MT. , et al. An exome sequencing study to assess the role of rare genetic variation in pulmonary fibrosis. Am J Respir Crit Care Med 2017; 196 (01) 82-93
  • 32 van Moorsel CH, van Oosterhout MF, Barlo NP. , et al. Surfactant protein C mutations are the basis of a significant portion of adult familial pulmonary fibrosis in a Dutch cohort. Am J Respir Crit Care Med 2010; 182 (11) 1419-1425
  • 33 Lawson WE, Grant SW, Ambrosini V. , et al. Genetic mutations in surfactant protein C are a rare cause of sporadic cases of IPF. Thorax 2004; 59 (11) 977-980
  • 34 Markart P, Ruppert C, Wygrecka M. , et al. Surfactant protein C mutations in sporadic forms of idiopathic interstitial pneumonias. Eur Respir J 2007; 29 (01) 134-137
  • 35 Dressen A, Abbas AR, Cabanski C. , et al. Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: a candidate gene sequencing study. Lancet Respir Med 2018; 6 (08) 603-614
  • 36 van Moorsel CH, Ten Klooster L, van Oosterhout MF. , et al. SFTPA2 mutations in familial and sporadic idiopathic interstitial pneumonia. Am J Respir Crit Care Med 2015; 192 (10) 1249-1252
  • 37 Wang Y, Kuan PJ, Xing C. , et al. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am J Hum Genet 2009; 84 (01) 52-59
  • 38 Nathan N, Giraud V, Picard C. , et al. Germline SFTPA1 mutation in familial idiopathic interstitial pneumonia and lung cancer. Hum Mol Genet 2016; 25 (08) 1457-1467
  • 39 Doubková M, Staňo Kozubík K, Radová L. , et al. A novel germline mutation of the SFTPA1 gene in familial interstitial pneumonia. Hum Genome Var 2019; 6: 12
  • 40 Epaud R, Delestrain C, Louha M, Simon S, Fanen P, Tazi A. Combined pulmonary fibrosis and emphysema syndrome associated with ABCA3 mutations. Eur Respir J 2014; 43 (02) 638-641
  • 41 Campo I, Zorzetto M, Mariani F. , et al. A large kindred of pulmonary fibrosis associated with a novel ABCA3 gene variant. Respir Res 2014; 15: 43
  • 42 Wambach JA, Casey AM, Fishman MP. , et al. Genotype-phenotype correlations for infants and children with ABCA3 deficiency. Am J Respir Crit Care Med 2014; 189 (12) 1538-1543
  • 43 Shulenin S, Nogee LM, Annilo T, Wert SE, Whitsett JA, Dean M. ABCA3 gene mutations in newborns with fatal surfactant deficiency. N Engl J Med 2004; 350 (13) 1296-1303
  • 44 Crossno PF, Polosukhin VV, Blackwell TS. , et al. Identification of early interstitial lung disease in an individual with genetic variations in ABCA3 and SFTPC. Chest 2010; 137 (04) 969-973
  • 45 Hawkins A, Guttentag SH, Deterding R. , et al. A non-BRICHOS SFTPC mutant (SP-CI73T) linked to interstitial lung disease promotes a late block in macroautophagy disrupting cellular proteostasis and mitophagy. Am J Physiol Lung Cell Mol Physiol 2015; 308 (01) L33-L47
  • 46 Venosa A, Katzen J, Tomer Y. , et al. Epithelial expression of an interstitial lung disease-associated mutation in surfactant protein-C modulates recruitment and activation of key myeloid cell populations in mice. J Immunol 2019; 202 (09) 2760-2771
  • 47 Nureki S-I, Tomer Y, Venosa A. , et al. Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis. J Clin Invest 2018; 128 (09) 4008-4024
  • 48 Mulugeta S, Nguyen V, Russo SJ, Muniswamy M, Beers MF. A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation. Am J Respir Cell Mol Biol 2005; 32 (06) 521-530
  • 49 Bridges JP, Wert SE, Nogee LM, Weaver TE. Expression of a human surfactant protein C mutation associated with interstitial lung disease disrupts lung development in transgenic mice. J Biol Chem 2003; 278 (52) 52739-52746
  • 50 Bridges JP, Xu Y, Na C-L, Wong HR, Weaver TE. Adaptation and increased susceptibility to infection associated with constitutive expression of misfolded SP-C. J Cell Biol 2006; 172 (03) 395-407
  • 51 Lawson WE, Crossno PF, Polosukhin VV. , et al. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol Physiol 2008; 294 (06) L1119-L1126
  • 52 Lawson WE, Cheng D-S, Degryse AL. , et al. Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci U S A 2011; 108 (26) 10562-10567
  • 53 Stewart GA, Ridsdale R, Martin EP. , et al. 4-Phenylbutyric acid treatment rescues trafficking and processing of a mutant surfactant protein-C. Am J Respir Cell Mol Biol 2012; 47 (03) 324-331
  • 54 Katzen J, Wagner BD, Venosa A. , et al. An SFTPC BRICHOS mutant links epithelial ER stress and spontaneous lung fibrosis. JCI Insight 2019; 4 (06) 126125
  • 55 Takezaki A, Tsukumo S-I, Setoguchi Y. , et al. A homozygous SFTPA1 mutation drives necroptosis of type II alveolar epithelial cells in patients with idiopathic pulmonary fibrosis. J Exp Med 2019; 216 (12) 2724-2735
  • 56 Beers MF, Knudsen L, Tomer Y. , et al. Aberrant lung remodeling in a mouse model of surfactant dysregulation induced by modulation of the Abca3 gene. Ann Anat 2017; 210: 135-146
  • 57 Korfei M, Ruppert C, Mahavadi P. , et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2008; 178 (08) 838-846
  • 58 King Jr TE, Bradford WZ, Castro-Bernardini S. , et al; ASCEND Study Group. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 2014; 370 (22) 2083-2092
  • 59 Richeldi L, du Bois RM, Raghu G. , et al; INPULSIS Trial Investigators. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 2014; 370 (22) 2071-2082
  • 60 Maher TM, Corte TJ, Fischer A. , et al. Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med 2019; S2213-2600(19)30341-8
  • 61 Flaherty KR, Wells AU, Cottin V. , et al; INBUILD Trial Investigators. Nintedanib in progressive fibrosing interstitial lung diseases. N Engl J Med 2019; 381 (18) 1718-1727
  • 62 Ramsey BW, Davies J, McElvaney NG. , et al; VX08-770-102 Study Group. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 2011; 365 (18) 1663-1672
  • 63 Heijerman HGM, McKone EF, Downey DG. , et al; VX17-445-103 Trial Group. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet 2019; 394 (10212): 1940-1948
  • 64 Middleton PG, Mall MA, Dřevínek P. , et al; VX17-445-102 Study Group. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med 2019; 381 (19) 1809-1819
  • 65 Jiang X, Fang G, Dong L. , et al. Chemical chaperone 4-phenylbutyric acid alleviates the aggregation of human familial pulmonary fibrosis-related mutant SP-A2 protein in part through effects on GRP78. Biochim Biophys Acta Mol Basis Dis 2018; 1864 (10) 3546-3557
  • 66 Dokal I. Dyskeratosis congenita: an inherited bone marrow failure syndrome. Br J Haematol 1996; 92 (04) 775-779
  • 67 Safa WF, Lestringant GG, Frossard PM. X-linked dyskeratosis congenita: restrictive pulmonary disease and a novel mutation. Thorax 2001; 56 (11) 891-894
  • 68 Kilic S, Kose H, Ozturk H. Pulmonary involvement in a patient with dyskeratosis congenita. Pediatr Int 2003; 45 (06) 740-742
  • 69 Utz JP, Ryu JH, Myers JL, Michels VV. Usual interstitial pneumonia complicating dyskeratosis congenita. Mayo Clin Proc 2005; 80 (06) 817-821
  • 70 Armanios M, Chen J-L, Chang Y-PC. , et al. Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc Natl Acad Sci U S A 2005; 102 (44) 15960-15964
  • 71 Knight SW, Heiss NS, Vulliamy TJ. , et al. X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene. Am J Hum Genet 1999; 65 (01) 50-58
  • 72 Heiss NS, Knight SW, Vulliamy TJ. , et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 1998; 19 (01) 32-38
  • 73 Vulliamy T, Marrone A, Dokal I, Mason PJ. Association between aplastic anaemia and mutations in telomerase RNA. Lancet 2002; 359 (9324): 2168-2170
  • 74 Vulliamy T, Marrone A, Szydlo R, Walne A, Mason PJ, Dokal I. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet 2004; 36 (05) 447-449
  • 75 Savage SA, Stewart BJ, Weksler BB. , et al. Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol Dis 2006; 37 (02) 134-136
  • 76 Armanios MY, Chen JJ-L, Cogan JD. , et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med 2007; 356 (13) 1317-1326
  • 77 Tsakiri KD, Cronkhite JT, Kuan PJ. , et al. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci U S A 2007; 104 (18) 7552-7557
  • 78 Alder JK, Parry EM, Yegnasubramanian S. , et al. Telomere phenotypes in females with heterozygous mutations in the dyskeratosis congenita 1 (DKC1) gene. Hum Mutat 2013; 34 (11) 1481-1485
  • 79 Du H, Guo Y, Ma D. , et al. A case report of heterozygous TINF2 gene mutation associated with pulmonary fibrosis in a patient with dyskeratosis congenita. Medicine (Baltimore) 2018; 97 (19) e0724
  • 80 Alder JK, Stanley SE, Wagner CL, Hamilton M, Hanumanthu VS, Armanios M. Exome sequencing identifies mutant TINF2 in a family with pulmonary fibrosis. Chest 2015; 147 (05) 1361-1368
  • 81 Kannengiesser C, Borie R, Ménard C. , et al. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis. Eur Respir J 2015; 46 (02) 474-485
  • 82 Kropski JA, Reiss S, Markin C. , et al. Rare genetic variants in PARN are associated with pulmonary fibrosis in families. Am J Respir Crit Care Med 2017; 196 (11) 1481-1484
  • 83 Stanley SE, Gable DL, Wagner CL. , et al. Loss-of-function mutations in the RNA biogenesis factor NAF1 predispose to pulmonary fibrosis-emphysema. Sci Transl Med 2016; 8 (351) 351ra107
  • 84 Gable DL, Gaysinskaya V, Atik CC. , et al. ZCCHC8, the nuclear exosome targeting component, is mutated in familial pulmonary fibrosis and is required for telomerase RNA maturation. Genes Dev 2019; 33 (19-20): 1381-1396
  • 85 Brault ME, Lauzon C, Autexier C. Dyskeratosis congenita mutations in dyskerin SUMOylation consensus sites lead to impaired telomerase RNA accumulation and telomere defects. Hum Mol Genet 2013; 22 (17) 3498-3507
  • 86 Tummala H, Walne A, Collopy L. , et al. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J Clin Invest 2015; 125 (05) 2151-2160
  • 87 Vannier J-B, Pavicic-Kaltenbrunner V, Petalcorin MI, Ding H, Boulton SJ. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 2012; 149 (04) 795-806
  • 88 Habermann AC, Gutierrez AJ, Bui LT. , et al. Single-cell RNA-sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. bioRxiv 2019 753806
  • 89 Adams TS, Schupp JC, Poli S. , et al. Single Cell RNA-seq reveals ectopic and aberrant lung resident cell populations in idiopathic pulmonary fibrosis. bioRxiv 2019 759902
  • 90 Morse C, Tabib T, Sembrat J. , et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur Respir J 2019; 54 (02) 1802441
  • 91 Reyfman PA, Walter JM, Joshi N. , et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med 2019; 199 (12) 1517-1536
  • 92 Xu Y, Mizuno T, Sridharan A. , et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 2016; 1 (20) e90558
  • 93 Degryse AL, Xu XC, Newman JL. , et al. Telomerase deficiency does not alter bleomycin-induced fibrosis in mice. Exp Lung Res 2012; 38 (03) 124-134
  • 94 Liu T, Chung MJ, Ullenbruch M. , et al. Telomerase activity is required for bleomycin-induced pulmonary fibrosis in mice. J Clin Invest 2007; 117 (12) 3800-3809
  • 95 Povedano JM, Martinez P, Flores JM, Mulero F, Blasco MA. Mice with pulmonary fibrosis driven by telomere dysfunction. Cell Rep 2015; 12 (02) 286-299
  • 96 Chen R, Zhang K, Chen H. , et al. Telomerase deficiency causes alveolar stem cell senescence-associated low-grade inflammation in lungs. J Biol Chem 2015; 290 (52) 30813-30829
  • 97 Lee J, Reddy R, Barsky L. , et al. Lung alveolar integrity is compromised by telomere shortening in telomerase-null mice. Am J Physiol Lung Cell Mol Physiol 2009; 296 (01) L57-L70
  • 98 Jackson S-R, Lee J, Reddy R. , et al. Partial pneumonectomy of telomerase null mice carrying shortened telomeres initiates cell growth arrest resulting in a limited compensatory growth response. Am J Physiol Lung Cell Mol Physiol 2011; 300 (06) L898-L909
  • 99 Naikawadi RP, Disayabutr S, Mallavia B. , et al. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis. JCI Insight 2016; 1 (14) e86704
  • 100 Alder JK, Barkauskas CE, Limjunyawong N. , et al. Telomere dysfunction causes alveolar stem cell failure. Proc Natl Acad Sci U S A 2015; 112 (16) 5099-5104
  • 101 Newton CA, Batra K, Torrealba J. , et al. Telomere-related lung fibrosis is diagnostically heterogeneous but uniformly progressive. Eur Respir J 2016; 48 (06) 1710-1720
  • 102 Borie R, Bouvry D, Cottin V. , et al. Regulator of telomere length 1 (RTEL1) mutations are associated with heterogeneous pulmonary and extra-pulmonary phenotypes. Eur Respir J 2019; 53 (02) 1800508
  • 103 Newton CA, Batra K, Torrealba J, Meyer K, Raghu G, Garcia CK. Pleuroparenchymal fibroelastosis associated with telomerase reverse transcriptase mutations. Eur Respir J 2017; 49 (05) 1700696
  • 104 Juge P-A, Borie R, Kannengiesser C. , et al; FREX consortium. Shared genetic predisposition in rheumatoid arthritis-interstitial lung disease and familial pulmonary fibrosis. Eur Respir J 2017; 49 (05) 1602314
  • 105 Silhan LL, Shah PD, Chambers DC. , et al. Lung transplantation in telomerase mutation carriers with pulmonary fibrosis. Eur Respir J 2014; 44 (01) 178-187
  • 106 Newton CA, Kozlitina J, Lines JR, Kaza V, Torres F, Garcia CK. Telomere length in patients with pulmonary fibrosis associated with chronic lung allograft dysfunction and post-lung transplantation survival. J Heart Lung Transplant 2017; 36 (08) 845-853
  • 107 O'Brien K, Troendle J, Gochuico BR. , et al. Pirfenidone for the treatment of Hermansky-Pudlak syndrome pulmonary fibrosis. Mol Genet Metab 2011; 103 (02) 128-134
  • 108 Gahl WA, Brantly M, Troendle J. , et al. Effect of pirfenidone on the pulmonary fibrosis of Hermansky-Pudlak syndrome. Mol Genet Metab 2002; 76 (03) 234-242
  • 109 O'Brien KJ, Introne WJ, Akal O. , et al. Prolonged treatment with open-label pirfenidone in Hermansky-Pudlak syndrome pulmonary fibrosis. Mol Genet Metab 2018; 125 (1-2): 168-173
  • 110 Patel NJ, Jankovic J. NKX2–1-related disorders. In: Adam MP, Ardinger HH, Pagon RA. , et al., eds. GeneReviews®. Seattle (WA): University of Washington, Seattle; 2014
  • 111 Young LR, Deutsch GH, Bokulic RE, Brody AS, Nogee LM. A mutation in TTF1/NKX2.1 is associated with familial neuroendocrine cell hyperplasia of infancy. Chest 2013; 144 (04) 1199-1206
  • 112 LeMoine BD, Browne LP, Liptzin DR, Deterding RR, Galambos C, Weinman JP. High-resolution computed tomography findings of thyroid transcription factor 1 deficiency (NKX2-1 mutations). Pediatr Radiol 2019; 49 (07) 869-875
  • 113 Nattes E, Lejeune S, Carsin A. , et al. Heterogeneity of lung disease associated with NK2 homeobox 1 mutations. Respir Med 2017; 129: 16-23
  • 114 Vece TJ, Watkin LB, Nicholas S. , et al. Copa syndrome: a novel autosomal dominant immune dysregulatory disease. J Clin Immunol 2016; 36 (04) 377-387
  • 115 Patwardhan A, Spencer CH. An unprecedented COPA gene mutation in two patients in the same family: comparative clinical analysis of newly reported patients with other known COPA gene mutations. Pediatr Rheumatol Online J 2019; 17 (01) 59
  • 116 Jensson BO, Hansdottir S, Arnadottir GA. , et al. COPA syndrome in an Icelandic family caused by a recurrent missense mutation in COPA. BMC Med Genet 2017; 18 (01) 129
  • 117 Taveira-DaSilva AM, Markello TC, Kleiner DE. , et al. Expanding the phenotype of COPA syndrome: a kindred with typical and atypical features. J Med Genet 2019; 56 (11) 778-782
  • 118 Seibold MA, Wise AL, Speer MC. , et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med 2011; 364 (16) 1503-1512
  • 119 Fingerlin TE, Murphy E, Zhang W. , et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat Genet 2013; 45 (06) 613-620
  • 120 Moore C, Blumhagen RZ, Yang IV. , et al. Resequencing study confirms that host defense and cell senescence gene variants contribute to the risk of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2019; 200 (02) 199-208
  • 121 Noth I, Zhang Y, Ma S-F. , et al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir Med 2013; 1 (04) 309-317
  • 122 Allen RJ, Porte J, Braybrooke R. , et al. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study. Lancet Respir Med 2017; 5 (11) 869-880
  • 123 Allen RJ, Guillen-Guio B, Oldham JM. , et al. Genome-wide association study of susceptibility to idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2019
  • 124 Richards S, Aziz N, Bale S. , et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (05) 405-424
  • 125 Alder JK, Hanumanthu VS, Strong MA. , et al. Diagnostic utility of telomere length testing in a hospital-based setting. Proc Natl Acad Sci U S A 2018; 115 (10) E2358-E2365
  • 126 Distler O, Highland KB, Gahlemann M. , et al; SENSCIS Trial Investigators. Nintedanib for systemic sclerosis-associated interstitial lung disease. N Engl J Med 2019; 380 (26) 2518-2528
  • 127 Albera C, Costabel U, Fagan EA. , et al. Efficacy of pirfenidone in patients with idiopathic pulmonary fibrosis with more preserved lung function. Eur Respir J 2016; 48 (03) 843-851
  • 128 Kolb M, Richeldi L, Behr J. , et al. Nintedanib in patients with idiopathic pulmonary fibrosis and preserved lung volume. Thorax 2017; 72 (04) 340-346
  • 129 Maher TM, Stowasser S, Nishioka Y. , et al; INMARK trial investigators. Biomarkers of extracellular matrix turnover in patients with idiopathic pulmonary fibrosis given nintedanib (INMARK study): a randomised, placebo-controlled study. Lancet Respir Med 2019; 7 (09) 771-779
  • 130 Rosas IO, Ren P, Avila NA. , et al. Early interstitial lung disease in familial pulmonary fibrosis. Am J Respir Crit Care Med 2007; 176 (07) 698-705
  • 131 Kropski JA, Pritchett JM, Zoz DF. , et al. Extensive phenotyping of individuals at risk for familial interstitial pneumonia reveals clues to the pathogenesis of interstitial lung disease. Am J Respir Crit Care Med 2015; 191 (04) 417-426
  • 132 Mathai SK, Humphries S, Kropski JA. , et al. MUC5B variant is associated with visually and quantitatively detected preclinical pulmonary fibrosis. Thorax 2019; 74 (12) 1131-1139
  • 133 Putman RK, Gudmundsson G, Araki T. , et al. The MUC5B promoter polymorphism is associated with specific interstitial lung abnormality subtypes. Eur Respir J 2017; 50 (03) 1700537
  • 134 Hunninghake GM, Hatabu H, Okajima Y. , et al. MUC5B promoter polymorphism and interstitial lung abnormalities. N Engl J Med 2013; 368 (23) 2192-2200
  • 135 Hobbs BD, Putman RK, Araki T. , et al. Overlap of genetic risk between interstitial lung abnormalities and idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2019; 200 (11) 1402-1413
  • 136 Ho JE, Gao W, Levy D. , et al. Galectin-3 is associated with restrictive lung disease and interstitial lung abnormalities. Am J Respir Crit Care Med 2016; 194 (01) 77-83
  • 137 Madahar P, Duprez DA, Podolanczuk AJ. , et al. Collagen biomarkers and subclinical interstitial lung disease: the Multi-Ethnic Study of Atherosclerosis. Respir Med 2018; 140: 108-114
  • 138 Kim JS, Anderson MR, Podolanczuk AJ. , et al. Associations of serum adipokines with subclinical interstitial lung disease among community-dwelling adults: the Multi-Ethnic Study of Atherosclerosis (MESA). Chest 2019; S0012-3692(19)34112-1
  • 139 McGroder CF, Aaron CP, Bielinski SJ. , et al. Circulating adhesion molecules and subclinical interstitial lung disease: the Multi-Ethnic Study of Atherosclerosis. Eur Respir J 2019; 54 (03) 1900295
  • 140 Alder JK, Cogan JD, Brown AF. , et al. Ancestral mutation in telomerase causes defects in repeat addition processivity and manifests as familial pulmonary fibrosis. PLoS Genet 2011; 7 (03) e1001352
  • 141 Ono S, Tanaka T, Ishida M. , et al. Surfactant protein C G100S mutation causes familial pulmonary fibrosis in Japanese kindred. Eur Respir J 2011; 38 (04) 861-869
  • 142 Cottin V, Reix P, Khouatra C, Thivolet-Béjui F, Feldmann D, Cordier J-F. Combined pulmonary fibrosis and emphysema syndrome associated with familial SFTPC mutation. Thorax 2011; 66 (10) 918-919