Synthesis 2020; 52(20): 3001-3006
DOI: 10.1055/s-0040-1707899
paper
© Georg Thieme Verlag Stuttgart · New York

An Efficient Copper-Catalyzed C(sp2)–S Formation Starting from Aryl Iodides and Tetramethylthiuram Monosulfide (TMTM)

Yue-Xiao Wu
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
,
Kang Peng
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
,
Jing-Hang Li
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
,
Zhi-Bing Dong
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
b   Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
c   Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. of China
d   Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
› Author Affiliations
Financial support from Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science & Technology (2019-20KZ01), Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University (KLSAOFM1810), Science and Technology Department of Hubei Province­ (2019CFB596), Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials (WKDM202003) are greatly appreciated.
Further Information

Publication History

Received: 22 April 2020

Accepted after revision: 01 June 2020

Publication Date:
20 July 2020 (online)


Abstract

A new, efficient copper-catalyzed C(sp2)–S formation of phenyl dithiocarbamates starting from aryl iodides and tetramethylthiuram monosulfide (TMTM) was developed. The target compounds, phenyl dithiocarbamates with active sites, were synthesized smoothly in good to excellent yields. The easy performance, high yields, decent functional group compatibility, and cost-effective substrates make the protocol practical and attractive in C–S bond formation.

Supporting Information

 
  • References

    • 1a Zeng M.-T, Xu W, Liu M, Liu X, Chang C.-Z, Zhu H, Dong Z.-B. Synth. Commun. 2017; 47: 1434
    • 1b Zeng M.-T, Xu W, Liu X, Chang C.-Z, Zhu H, Dong Z.-B. Eur. J. Org. Chem. 2017; 6060
    • 1c Wu X.-M, Yan G.-B. Synlett 2019; 30: 610
  • 2 Enders D, Rembiak A, Liebich JX. Synthesis 2011; 281
    • 3a Doyon G, Zerbato J, Mellors JW, Sluis-Cremer N. AIDS 2013; 27: F7
    • 3b Nash T, Rice WG. Antimicrob. Agents Chemother. 1998; 42: 1488
    • 3c Bouma MJ, Snowdon D, Fairlamb AH, Ackers JP. Antimicrob. Agents Chemother. 1998; 42: 817
  • 4 Len C, Postel D, Ronco G, Villa P. Agric. Food Chem. 1997; 45: 3
  • 5 Fujii S, Yoshimura T. Coord. Chem. Rev. 2000; 198: 89
    • 6a D’hooghe M, De Kimpe N. Tetrahedron 2006; 62: 513
    • 6b Erian AW, Sherif SM. Tetrahedron 1999; 55: 7957
    • 6c Goel A, Mazur SJ, Fattah RJ, Hartman TL, Turpin JA, Huang M, Rice WG, Appella E, Inman JK. Bioorg. Med. Chem. Lett. 2002; 12: 767
    • 6d Nagano R, Shibata K, Naito T, Fuse A, Asano K, Hashizume T, Nakagawa S. Antimicrob. Agents Chemother. 1997; 41: 2278
    • 6e Urlyapova NG, Yushchenko AA, Daudova AD, Makarov VA. Bull. Exp. Biol. Med. 2006; 143: 327
  • 7 Rafin C, Veignie E, Sancholle M, Postel D, Len C, Villa P, Ronco GJ. Agric. Food Chem. 2000; 48: 5283
    • 8a Boas U, Gertz H, Christensen JB, Heegaard PM. Tetrahedron Lett. 2004; 45: 269
    • 8b Mukerjee AK, Ashare R. Chem. Rev. 1991; 91: 1
    • 8c Liu Y, Bao W. Tetrahedron Lett. 2007; 48: 4785
    • 9a Bakkestuen AK, Gundersen LL. Tetrahedron Lett. 2003; 44: 3359
    • 9b Kotali E, Varvoglis A. J. Chem. Soc., Perkin Trans. 1 1987; 2759
    • 9c Sondhi M, Verma RP, Singhal N, Shukla R, Raghubir R, Dubey MP. Indian Drugs 1999; 36: 50
  • 10 Peng K, Zhu H, Liu X, Peng H.-Y, Chen J.-Q, Dong Z.-B. Eur. J. Org. Chem. 2019; 7629
    • 11a Jen K, Cava MP. Tetrahedron Lett. 1982; 23: 2001
    • 11b Krasovskiy A, Gavryushin A, Knochel P. Synlett 2005; 2691
    • 11c Krasovskiy A, Gavryushin A, Knochel P. Synlett 2006; 792
    • 11d Grunwell JR. J. Org. Chem. 1970; 35: 1500
    • 11e Krasovskiy A, Malakhov V, Gavryushin A, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 6040
    • 11f Gronowitz S, Hornfeldt AB, Temciuc M. Synthesis 1993; 483
    • 12a Azizi N, Aryanasab F, Saidi MR. Org. Lett. 2006; 8: 5275
    • 12b Bhadra S, Saha A, Ranu BC. Green Chem. 2008; 10: 1224
  • 13 Xu W, Gao F, Dong Z.-B. Eur. J. Org. Chem. 2018; 821
    • 15a Liu X, Dong Z.-B. J. Org. Chem. 2019; 84: 11524
    • 15b Dong Z.-B, Balkenhohl M, Tan E, Knochel P. Org. Lett. 2018; 20: 7581
    • 15c Zhang S.-B, Liu X, Gao M.-Y, Dong Z.-B. J. Org. Chem. 2018; 83: 14933
    • 15d Chang C.-Z, Liu X, Zhu H, Dong Z.-B. J. Org. Chem. 2018; 83: 13530
    • 15e Liu X, Zhang S.-B, Zhu H, Dong Z.-B. J. Org. Chem. 2018; 83: 11703
    • 15f Liu X, Liu M, Xu W, Zeng M.-T, Zhu H, Chang C.-Z, Dong Z.-B. Green Chem. 2017; 19: 5591
    • 15g Liu X, Cao Q, Xu W, Zeng M.-T, Dong Z.-B. Eur. J. Org. Chem. 2017; 5795
    • 15h Cheng Y, Liu X, Dong Z.-B. Eur. J. Org. Chem. 2018; 815
    • 15i Liu X, Zhang S.-B, Zhu H, Cheng Y, Peng H.-Y, Dong Z.-B. Eur. J. Org. Chem. 2018; 4483
    • 15j Gao M.-Y, Xu W, Zhang S.-B, Li Y.-S, Dong Z.-B. Eur. J. Org. Chem. 2018; 6693
    • 15k Zhu H, Zhang S.-B, Liu X, Chen Y, Peng H.-Y, Dong Z.-B. Eur. J. Org. Chem. 2018; 5711