Synthesis 2020; 52(23): 3684-3692
DOI: 10.1055/s-0040-1707237
paper
© Georg Thieme Verlag Stuttgart · New York

Catalytic Asymmetric Substitution Reaction of 3-Substituted 2-Indolylmethanols with 2-Naphthols

Jin-Ping Lan
,
Yi-Nan Lu
,
Ke-Wei Chen
,
Fei Jiang
,
Feng Gao
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: zhangyc@jsnu.edu.cn   Email: gf2016@jsnu.edu.cn
,
Yu-Chen Zhang
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: zhangyc@jsnu.edu.cn   Email: gf2016@jsnu.edu.cn
,
Feng Shi
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: zhangyc@jsnu.edu.cn   Email: gf2016@jsnu.edu.cn
› Author Affiliations
We appreciate the financial support from the National Natural Science­ Foundation of China (21772069 and 21831007), Six Kinds of Talents Project of Jiangsu Province (SWYY-025), TAPP, and Undergraduate Students Project of JSNU.
Further Information

Publication History

Received: 10 June 2020

Accepted after revision: 13 July 2020

Publication Date:
17 August 2020 (online)


§ These authors contributed equally to the work

Abstract

A catalytic asymmetric substitution of 3-substituted 2-indolylmethanols with 2-naphthols has been established under the catalysis of chiral phosphoric acid. By this approach, a series of structurally diversified triarylmethane derivatives were obtained in moderate to high yields with good enantioselectivities (up to 97% yield, 95:5 er). This approach not only enriches the chemistry of 2-indolylmethanol-inolved catalytic asymmetric substitutions, but also provides a useful method for the enantioselective synthesis of chiral triarylmethane derivatives.

Supporting Information

 
  • References


    • For some pertinent reviews, see:
    • 1a Palmieri A, Petrini M, Shaikh RR. Org. Biomol. Chem. 2010; 8: 1259
    • 1b Chen L, Yin X.-P, Wang C.-H, Zhou J. Org. Biomol. Chem. 2014; 12: 6033
    • 1c Wang L, Chen Y, Xiao J. Asian J. Org. Chem. 2014; 3: 1036
    • 1d Zhu S, Xu L, Wang L, Xiao J. Chin. J. Org. Chem. 2016; 36: 1229
    • 1e Mei G.-J, Shi F. J. Org. Chem. 2017; 82: 7695
    • 1f Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
    • 1g Petrini M. Adv. Synth. Catal. 2020; 362: 1214

      For early examples, see:
    • 2a Guo Q.-X, Peng Y.-G, Zhang J.-W, Song L, Feng Z, Gong L.-Z. Org. Lett. 2009; 11: 4620
    • 2b Sun F.-L, Zeng M, Gu Q, You S.-L. Chem. Eur. J. 2009; 15: 8709

      For substitutions, see:
    • 3a Zhang H.-H, Wang C.-S, Li C, Mei G.-J, Li Y, Shi F. Angew. Chem. Int. Ed. 2017; 56: 116
    • 3b Zhu Z.-Q, Shen Y, Liu J.-X, Tao J.-Y, Shi F. Org. Lett. 2017; 19: 1542
    • 3c Xu M.-M, Wang H.-Q, Mao Y.-J, Mei G.-J, Wang S.-L, Shi F. J. Org. Chem. 2018; 83: 5027

      For cyclizations, see:
    • 4a Sun X.-X, Zhang H.-H, Li G.-H, He Y.-Y, Shi F. Chem. Eur. J. 2016; 22: 17526
    • 4b Zhu Z.-Q, Shen Y, Sun X.-X, Tao J.-Y, Liu J.-X, Shi F. Adv. Synth. Catal. 2016; 358: 3797
    • 4c Xu M.-M, Wang H.-Q, Wan Y, Wang S.-L, Shi F. J. Org. Chem. 2017; 82: 10226
    • 4d Mao J, Zhang H, Ding X.-F, Luo X, Deng W.-P. J. Org. Chem. 2019; 84: 11186
    • 4e Sun M, Ma C, Zhou S.-J, Lou S.-F, Xiao J, Jiao Y, Shi F. Angew. Chem. Int. Ed. 2019; 58: 8703
    • 4f Zhou S.-J, Sun M, Wang J.-Y, Yu X.-Y, Lu H, Zhang Y.-C, Shi F. Eur. J. Org. Chem. 2020; 4301

      For cyclizations, see also:
    • 5a Bera K, Schneider C. Chem. Eur. J. 2016; 22: 7074
    • 5b Bera K, Schneider C. Org. Lett. 2016; 18: 5660
    • 5c Sun X.-X, Li C, He Y.-Y, Zhu Z.-Q, Mei G.-J, Shi F. Adv. Synth. Catal. 2017; 359: 2660
    • 5d Li C, Lu H, Sun X.-X, Mei G.-J, Shi F. Org. Biomol. Chem. 2017; 15: 4794

      For substitutions, see also:
    • 6a Qi S, Liu C.-Y, Ding J.-Y, Han F.-S. Chem. Commun. 2014; 50: 8605
    • 6b Liu C.-Y, Han F.-S. Chem. Commun. 2015; 51: 11844
    • 6c Gong Y.-X, Wu Q, Zhang H.-H, Zhu Q.-N, Shi F. Org. Biomol. Chem. 2015; 13: 7993
    • 6d Mao Y.-J, Lu Y.-N, Li T.-Z, Wu Q, Tan W, Shi F. Chin. J. Org. Chem. 2020; 40 DOI: 10.6023/cjoc202005096.

      For some examples on bioactivity, see:
    • 7a Chintharlapalli S, Burghardt R, Papineni S, Ramaiah S, Yoon K, Safe S. J. Biol. Chem. 2005; 280: 24903
    • 7b Contractor R, Samudio IJ, Estrov Z, Harris D, McCubrey JA, Safe SH, Andreeff M, Konopleva M. Cancer. Res. 2005; 65: 2890
    • 7c Song B.-B, Qu X, Zhang L, Han K.-L, Wu D, Xiang C, Wu H.-R, Wang T.-J, Teng Y.-O, Yu P. J. Chem. Pharm. Res. 2014; 6: 239

    • For some examples on asymmetric synthesis, see:
    • 7d Wang Z, Ai F, Wang Z, Zhao W, Zhu G, Lin Z, Sun J. J. Am. Chem. Soc. 2015; 137: 383
    • 7e Zhao W, Wang Z, Chu B, Sun J. Angew. Chem. Int. Ed. 2015; 54: 1910
    • 7f Wong YF, Wang Z, Sun J. Org. Biomol. Chem. 2016; 14: 5751

      For a recent review, see:
    • 8a Li T.-Z, Liu S.-J, Tan W, Shi F. Chem. Eur. J. 2020; 26: in press; 10.1002/chem.202001397

    • For some examples, see:
    • 8b Zhang Y.-C, Zhao J.-J, Jiang F, Sun S.-B, Shi F. Angew. Chem. Int. Ed. 2014; 53: 13912
    • 8c Zhao J.-J, Sun S.-B, He S.-H, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
    • 8d Ma C, Jiang F, Sheng F.-T, Jiao Y, Mei G.-J, Shi F. Angew. Chem. Int. Ed. 2019; 58: 3014
    • 8e Jiang F, Chen K.-W, Wu P, Zhang Y.-C, Jiao Y, Shi F. Angew. Chem. Int. Ed. 2019; 58: 15104
    • 8f Sheng F.-T, Li Z.-M, Zhang Y.-Z, Sun L.-X, Zhang Y.-C, Tan W, Shi F. Chin. J. Chem. 2020; 38: 583

      For early examples, see:
    • 9a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 9b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356

      For some relevant reviews, see:
    • 10a Akiyama T. Chem. Rev. 2007; 107: 5744
    • 10b Terada M. Chem. Commun. 2008; 35: 4097
    • 10c Terada M. Synthesis 2010; 1929
    • 10d Zamfir A, Schenker S, Freund M, Tsogoeva SB. Org. Biomol. Chem. 2010; 8: 5262
    • 10e Su E.-J, Shi F.-J. Chin. J. Org. Chem. 2010; 30: 486
    • 10f Yu J, Shi F, Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
    • 10g Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 10h Wu H, He Y.-P, Shi F. Synthesis 2015; 47: 1990
    • 10i Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2017; 117: 10608
    • 10j Merad J, Lalli C, Bernadat G, Maury J, Masson G. Chem. Eur. J. 2018; 24: 3925
    • 10k Xia Z.-L, Xu-Xu Q.-F, Zheng C, You S.-L. Chem. Soc. Rev. 2020; 49: 286

    • For highlights, see:
    • 10l Liu L, Zhang J. Chin. J. Org. Chem. 2019; 39: 3308
    • 10m Tan B. Chin. J. Org. Chem. 2020; 40: 1404

      For an early example on the bifunctional nature of CPA, see:
    • 11a Yamanaka M, Itoh J, Fuchibe K, Akiyama T. J. Am. Chem. Soc. 2007; 129: 6756

    • For some recent examples, see:
    • 11b Chen Y.-H, Cheng D.-J, Zhang J, Wang Y, Liu X.-Y, Tan B. J. Am. Chem. Soc. 2015; 137: 15062
    • 11c Tang M, Zhao J.-J, Wu Q, Tu M.-S, Shi F. Synthesis 2017; 49: 2035
    • 11d Wu J.-L, Wang J.-Y, Wu P, Wang J.-R, Mei G.-J, Shi F. Org. Chem. Front. 2018; 5: 1436
    • 11e Wang Y.-B, Yu P, Zhou Z.-P, Zhang J, Wang J, Luo S.-H, Gu Q.-S, Houk KN, Tan B. Nat. Catal. 2019; 2: 504
    • 11f Wang C.-S, Li T.-Z, Liu S.-J, Zhang Y.-C, Deng S, Jiao Y, Shi F. Chin. J. Chem. 2020; 38: 543