Synlett 2020; 31(16): 1613-1618
DOI: 10.1055/s-0040-1707196
letter
© Georg Thieme Verlag Stuttgart · New York

Room-Temperature Palladium(II)-Catalyzed Direct 2-Arylation of Indoles with Tetraarylstannanes

Yuxia Liu
a   Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi’an, 710069, P. R. of China   Email: yuxialiu@nwu.edu.cn
,
Chao Wang
b   Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P. R. of China   Email: c.wang@snnu.edu.cn
,
Linjuan Huang
c   Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi’an, 710069, P. R. of China   Email: huanglj@nwu.edu.cn
,
Dong Xue
d   Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P. R. of China   Email: xuedong_welcome@snnu.edu.cn
› Author Affiliations
We are grateful for the financial support of the National Natural Science Foundation of China (21902126), China Postdoctoral Science Foundation (2019M663947XB), and the 111 Project (B14041).
Further Information

Publication History

Received: 04 May 2020

Accepted after revision: 14 June 2020

Publication Date:
05 August 2020 (online)


Abstract

A palladium(II)-catalyzed direct 2-arylation of indoles by tetraarylstannanes with oxygen (balloon) as the oxidant at room temperature has been developed. Various tetraarylstannanes can be employed as aryl sources for 2-arylation of indoles in up to 89% yield, providing a practical and efficient catalytic protocol for accessing 2-arylindoles.

Supporting Information

 
  • References and Notes

    • 1a Marcin LR, Denhart DJ, Mattson RJ. Org. Lett. 2005; 7: 2651
    • 1b Khdour O, Ouyang A, Skibo EB. J. Org. Chem. 2006; 71: 5855
    • 1c Venkatesh C, Ila H, Junjappa H, Mathur S, Huch V. J. Org. Chem. 2002; 67: 9477
    • 1d Cacchi S, Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 2a Daly S, Hayden K, Malik I, Porch N, Tang H, Rogelj S, Frolova LV, Lepthien K, Kornienko A, Magedov IV. Bioorg. Med. Chem. Lett. 2011; 21: 4720
    • 2b Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH. Molecules 2013; 18: 6620
    • 2c Rohini R, Reddy PM, Shanker K, Hu A, Ravinder V. Eur. J. Med. Chem. 2010; 45: 1200
    • 2d Shi W, Marcus SL, Lowary TL. Bioorg. Med. Chem. 2011; 19: 603
    • 2e Talele TT. J. Med. Chem. 2016; 59: 8712
    • 2f Chadha N, Silakari O. Eur. J. Med. Chem. 2017; 134: 159
    • 3a Liu Y, Gribble GW. Tetrahedron Lett. 2000; 41: 8717
    • 3b Barluenga J, Alejandro Fernández M, Aznar F, Valdés C. Chem. Eur. J. 2005; 11: 2276
    • 3c Fang Y.-Q, Lautens M. Org. Lett. 2005; 7: 3549
    • 3d Li P, Wang L, Wang M, You F. Eur. J. Org. Chem. 2008; 5946
    • 3e Alsabeh PG, Lundgren RJ, Longobardi LE, Stradiotto M. Chem. Commun. 2011; 47: 6936

      For examples of transition-metal-catalyzed C–H functionalizations, see:
    • 4a Ackermann L. Chem. Rev. 2011; 111: 1315
    • 4b Arockiam PB, Bruneau C, Dixneuf P. Chem. Rev. 2012; 112: 5879
    • 4c Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 4d Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 4e Davies HM. L, Morton D. J. Org. Chem. 2016; 81: 343
    • 4f Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
    • 4g Leitch JA, Wilson PB, McMullin CL, Mahon MF, Bhonoah Y, Williams IH, Frost CG. ACS Catal. 2016; 6: 5520
    • 4h Leitch JA, Cook HP, Bhonoah Y, Frost CG. J. Org. Chem. 2016; 81: 10081
    • 4i Ma W, Dong H, Wang D, Ackermann L. Adv. Synth. Catal. 2017; 359: 966
    • 4j Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 4k Brown JA, Cochrane AR, Irvine S, Kerr WJ, Mondal B, Parkinson JA, Paterson LC, Reid M, Tuttle T, Andersson S, Nilsson GN. Adv. Synth. Catal. 2014; 356: 3551
    • 4l Sandtorv AH. Adv. Synth. Catal. 2015; 357: 2403
    • 4m Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 5a Netherton MR, Dai C, Neuschütz K, Fu GC. J. Am. Chem. Soc. 2001; 123: 10099
    • 5b Littke AF, Fu GC. Angew. Chem. Int. Ed. 2002; 41: 4176
    • 5c Bellina F, Cauteruccio S, Rossi R. Eur. J. Org. Chem. 2006; 1379
    • 5d Touré BB, Lane BS, Sames D. Org. Lett. 2006; 8: 1979
    • 5e Wang X, Gribkov DV, Sames D. J. Org. Chem. 2007; 72: 1476
    • 5f Bellina F, Calandri C, Cauteruccio S, Rossi R. Tetrahedron 2007; 63: 1970
    • 5g Lebrasseur N, Larrosa L. J. Am. Chem. Soc. 2008; 130: 2926
    • 5h Joucla L, Batail N, Djakovitch L. Adv. Synth. Catal. 2010; 352: 2929
    • 5i Lu G.-p, Chun C. Synlett 2012; 23: 2992
    • 5j Huang Y.-B, Shen M, Wang X, Huang P, Chen R, Lin Z.-J, Cao R. J. Catal. 2016; 333: 1
    • 5k Das D, Bhutia ZT, Chatterjee A, Banerjee M. J. Org. Chem. 2019; 84: 10764
    • 6a Deprez NR, Kalyani D, Krause A, Sanford MS. J. Am. Chem. Soc. 2006; 128: 4972
    • 6b Malmgren J, Nagendiran A, Tai CW, Bäckvall JE, Olofsson B. Chem. Eur. J. 2014; 20: 13531
    • 6c Estevan F, Ibáñez S, Ofori A, Hirva P, Sanaú M, Úbeda MA. Eur. J. Inorg. Chem. 2015; 2822
    • 6d Duan L, Fu R, Zhang B, Shi W, Chen S, Wan Y. ACS Catal. 2016; 6: 1062
    • 7a Yang S.-D, Sun C.-L, Fang Z, Li B.-J, Li Y.-Z, Shi Z.-J. Angew. Chem. Int. Ed. 2008; 47: 1473
    • 7b Zhao J, Zhang Y, Cheng K. J. Org. Chem. 2008; 73: 7428
    • 7c Williams TJ, Reay AJ, Whitwood AC, Fairlamb IJ. S. Chem. Commun. 2014; 50: 3052
    • 7d Zhang L, Li P, Liu C, Yang J, Wang M, Wang L. Catal. Sci. Technol. 2014; 4: 1979
  • 8 Liang Z, Yao B, Zhang Y. Org. Lett. 2010; 12: 3185
  • 9 Wu M, Luo J, Xiao F, Zhang S, Deng G.-J, Luo H.-A. Adv. Synth. Catal. 2012; 354: 335
  • 10 Liu C, Ding L, Guo G, Liu W, Yang F.-L. Org. Biomol. Chem. 2016; 14: 2824
    • 11a Liu C, Miao T, Zhang L, Li P, Zhang Y, Wang L. Chem. Asian J. 2014; 9: 2584
    • 11b Liu Y, Ma X, Wu G, Liu Z, Yang X, Wang B, Liu C, Zhang Y, Huang Y. New J. Chem. 2019; 43: 9255
  • 12 Stuart DR, Villemure E, Fagnou K. J. Am. Chem. Soc. 2007; 129: 12072
  • 13 Chang S, Dong LL, Song HQ, Feng B. Org. Biomol. Chem. 2018; 16: 3282
  • 14 Tiwari VK, Kamal N, Kapur M. Org. Lett. 2015; 17: 1766
  • 16 Phipps RJ, Grimster NP, Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 8172
  • 17 Seiple IB, Su S, Rodriguez RA, Gianatassio R, Fujiwara Y, Sobel AL, Baran PS. J. Am. Chem. Soc. 2010; 132: 13194
  • 18 Yu T.-Y, Zheng Z.-J, Bai J.-H, Fang H, Wei H. Adv. Synth. Catal. 2019; 361: 2020
  • 19 Paul S, Das KK, Manna S, Panda S. Chem. Eur. J. 2019; 26: 1922
  • 20 Ohe T, Uemura S. Bull. Chem. Soc. Jpn. 2003; 76: 1423
    • 21a Ohe T, Wakita T, Motofusa S, Cho CS, Ohe K, Uemura S. Bull. Chem. Soc. Jpn. 2000; 73: 2149
    • 21b Ohe T, Uemura S. Tetrahedron Lett. 2002; 43: 1269
    • 21c Rohand T, Qin W, Boens N, Dehaen W. Eur. J. Org. Chem. 2006; 4658
    • 21d Yabe Y, Maegawa T, Monguchi Y, Sajiki H. Tetrahedron 2010; 66: 8654
    • 22a Zhou W.-J, Wang K.-H, Wang J.-X. Adv. Synth. Catal. 2009; 351: 1378
    • 22b Zhou W.-J, Wang K.-H, Wang J.-X. J. Org. Chem. 2009; 74: 5599
  • 23 Xue D, Li J, Liu Y.-X, Han W.-Y, Zhang Z.-T, Wang C, Xiao J. Synlett 2012; 23: 1941
  • 24 He Q, Wang L, Liang Y, Zhang Z, Wnuk SF. J. Org. Chem. 2016; 81: 9422
  • 25 For details, see SI.
    • 26a Lane BS, Sames D. Org. Lett. 2004; 6: 2897
    • 26b Lane BS, Brown MA, Sames D. J. Am. Chem. Soc. 2005; 127: 8050 ; corrigendum: J. Am. Chem. Soc. 2007, 129, 241
    • 26c Bressy C, Alberico D, Lautens M. J. Am. Chem. Soc. 2005; 127: 13148
    • 26d Takeda D, Yamashita M, Hirano K, Satoh T, Miura M. Chem. Lett. 2011; 40: 1015
    • 26e Kirchberg S, Fröhlich R, Studer A. Angew. Chem. Int. Ed. 2009; 48: 4235
  • 27 Li Y, Xue D, Lu W, Fan X, Wang C, Xiao J. RSC Adv. 2013; 3: 11463
  • 28 Jackson AH, Lynch PP. J. Chem. Soc., Perkin Trans. 2 1987; 1215
  • 29 Grimster NP, Gauntlett C, Godfrey CR. A, Gaunt MJ. Angew. Chem. Int. Ed. 2005; 44: 3125
  • 30 1-Methyl-2-Phenyl-1H-indole (3a); Typical Procedure A Schlenk tube equipped with a magnetic stirrer bar was charged with N-methylindole (1a; 0.5 mmol, 1.0 equiv), Ph4Sn (2a; 0.19 mmol), and (MeCN)2Pd(OTs)2 (10 mol%, 0.05 mmol). HOAc (5 mL) was then introduced by using a syringe. The tube was degassed (×3) then charged with O2, and the O2 atmosphere was maintained by using a balloon. The mixture was then stirred at 25 °C for 12 h. The HOAc was removed by rotary evaporation, and the residue was dissolved in CH2Cl2 (50 mL) and the solution was washed with aq NaHCO3 (2 × 30 mL). The organic layers were combined, washed with brine, and dried (Na2SO4). The solvent was removed by rotary evaporation, and the crude product was purified by column chromatography (silica gel, PE–CH2Cl2) to give a white solid; yield: 89 mg (86%); mp 67.5–69.5 °C; Rf = 0.2 (PE–CH2Cl2, 10:1). 1H NMR (300 MHz, acetone-d 6): δ = 7.59–7.57 (m, 3 H), 7.50–7.48 (m, 2 H), 7.43 (d, J = 7.8 Hz, 2 H), 7.20 (t, J = 7.2 Hz, 1 H), 7.18 (t, J = 7.2 Hz, 1 H), 6.55 (s, 1 H), 3.75 (s, 3 H).13C NMR (75 MHz, acetone-d 6): δ = 141.9, 139.2, 133.4, 129.7, 129.1, 128.7, 128.4, 122.0, 120.8, 120.1, 110.3, 101.9, 31.1. HRMS (ESI); m/z [M + Na]+ calculated for C15H13NNa: 230.0946; found: 230.0948. 1-Methyl-2-(4-tolyl)-1H-indole (3b) White solid; yield: 88 mg (80%); mp 97.5–100.5 ℃; Rf = 0.2 (PE–CH2Cl2, 10:1). 1H NMR (300 MHz, acetone-d 6): δ = (m, 1 H), 7.48–7.40 (m, 3 H), 7.33–7.31 (m, 2 H), 7.18 (t, J = 7.2 Hz, 1 H), 7.07 (t, J = 7.2 Hz, 1 H), 6.50 (s, 1 H), 3.75 (s, 3 H), 2.40 (s, 3 H). 13C NMR (75 MHz, acetone-d 6): δ = 142.0, 139.1, 138.2, 130.5, 129.7, 129.3, 128.8, 120.6, 120.4, 120.1, 110.3, 101.5, 31.1, 20.9. HRMS (ESI); m/z [M + Na]+ calculated for C16H15NNa: 244.1102; found: 244.1104. Characterization data for other products are reported in the SI.