Synlett 2020; 31(11): 1077-1081
DOI: 10.1055/s-0040-1707121
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Asymmetric Intermolecular N-Monoarylation of Unprotected Sulfonamides via Desymmetrization of Diaryliodonium Salts at Room Temperature

Yan-Li Li
,
Chun Zhang
,
Xiao Jin
,
Xiu-Ling Yu
,
Zhen Wang
,
Hui-Zhen Zhang
,
Wen-Qiang Yang
Financial support from the National Natural Science Foundation of China (Grant 21602095).
Further Information

Publication History

Received: 21 February 2020

Accepted after revision: 26 April 2020

Publication Date:
19 May 2020 (online)


Abstract

A copper-catalyzed asymmetric intermolecular N-monoarylation of weakly nucleophilic sulfonamide by desymmetrization of cyclic diaryliodonium salts has been developed. Chiral copper(II)–diamine ligand complexes catalyzed this intermolecular asymmetric aryl C–N cross-coupling reaction effectively at room temperature to afford a series of N-monoarylsulfonamides in good to excellent yields and enantioselectivities.

Supporting Information

 
  • References and Notes


    • For some important reviews of transition-metal-catalyzed aryl C–N cross coupling reactions, see:
    • 1a Lin H, Sun D. Org. Prep. Proced. Int. 2013; 45: 341
    • 1b Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 1c Munir I, Zahoor AF, Rasool N, Naqvi SA. R, Zia KM, Ahmad R. Mol. Diversity 2019; 23: 215
    • 1d West MJ, Fyfe JW. B, Vantourout JC, Watson AJ. B. Chem. Rev. 2019; 119: 12491

      For examples of Pd-catalyzed enantioselective N-arylation for the formation of optically active atropisomeric compounds with N–C chiral axis, see:
    • 2a Kitagawa O, Takahashi M, Yoshikawa M, Taguchi T. J. Am. Chem. Soc. 2005; 127: 3676
    • 2b Kitagawa O, Yoshikawa M, Tanabe H, Morita T, Takahashi M, Dobashi Y, Taguchi T. J. Am. Chem. Soc. 2006; 128: 12923
    • 2c Kitagawa O, Kurihara D, Tanabe H, Shibuya T, Taguchi T. Tetrahedron Lett. 2008; 49: 471
    • 2d Takahashi M, Tanabe H, Nakamura T, Kuribara D, Yamazaki T, Kitagawa O. Tetrahedron 2010; 66: 288
    • 2e Takahashi I, Morita F, Kusagaya S, Fukaya H, Kitagawa O. Tetrahedron: Asymmetry 2012; 23: 1657

      For examples of transition-metal-catalyzed intramolecular enantioselective N-arylation via desymmetrization strategy, see:
    • 3a Takenaka K, Itoh N, Sasai H. Org. Lett. 2009; 11: 1483
    • 3b Porosa L, Viirre RD. Tetrahedron Lett. 2009; 50: 4170
    • 3c Zhou FT, Guo JJ, Liu JG, Ding K, Yu SY, Cai Q. J. Am. Chem. Soc. 2012; 134: 14326
    • 3d Zhou FT, Cheng GJ, Yang WQ, Long Y, Zhang SS, Wu YD, Zhang XH, Cai Q. Angew. Chem. Int. Ed. 2014; 53: 9555
    • 3e Takenaka K, Sako M, Takatani S, Sasai H. ARKIVOC 2015; (ii): 52
    • 3f He N, Huo YP, Liu JG, Huang YS, Zhang SS, Cai Q. Org. Lett. 2015; 17: 374
    • 3g Liu J, Tian Y, Shi J, Zhang S, Cai Q. Angew. Chem. Int. Ed. 2015; 54: 10917

      For examples of intramolecular enantioselective N-arylation via kinetic resolution, see:
    • 4a Tagashira J, Imao D, Yamamoto T, Ohta T, Furukawa I, Ito Y. Tetrahedron: Asymmetry 2005; 16: 2307
    • 4b Yang W, Long Y, Zhang S, Zeng Y, Cai Q. Org. Lett. 2013; 15: 3598
    • 4c Liu YY, Wang ZS, Guo B, Cai Q. Tetrahedron Lett. 2016; 57: 2379

      For examples of iridium-catalyzed intramolecular enantioselective C–H amidations of phosphine oxides via desymmetrization strategy, see:
    • 5a Gwon D, Park S, Chang S. Tetrahedron 2015; 71: 4504
    • 5b Jang YS, Dieckmann M, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 15088
    • 6a Drew J. Science 2000; 287: 1960
    • 6b Stellwagen JC, Adjabeng GM, Arnone MR, Dickerson SH, Han C, Hornberger KR, King AJ, Mook RA. Jr, Petrov KG, Rheault TR, Rominger CM, Rossanese OW, Smitheman KN, Waterson AG, Uehling DE. Bioorg. Med. Chem. Lett. 2011; 21: 4436
    • 6c Canale V, Partyka A, Kurczab R, Krawczyk M, Kos T, Satala G, Kubica B, Jastrzebska-Wiesek M, Wesolowska A, Bojarski AJ, Popik P, Zajdel P. Bioorg. Med. Chem. 2017; 25: 2789
    • 6d Dai X, Kaluz S, Jiang Y, Shi L, McKinley D, Wang Y, Wang B, Van Meir EG, Tan C. Oncotarget 2017; 8: 99245
    • 7a Suh OK, Kim SH, Lee MG. Biopharm. Drug. Dispos. 2003; 24: 275
    • 7b Gulcin I, Taslimi P. Expert. Opin. Ther. Pat. 2018; 28: 541
    • 8a Fox E, Maris JM, Widemann BC, Goodspeed W, Goodwin A, Kromplewski M, Fouts ME, Medina D, Cohn SL, Krivoshik A, Hagey AE, Adamson PC, Balis FM. Clin. Cancer Res. 2008; 14: 1111
    • 8b Assi R, Kantarjian HM, Kadia TM, Pemmaraju N, Jabbour E, Jain N, Daver N, Estrov Z, Uehara T, Owa T, Cortes JE, Borthakur G. Cancer 2018; 124: 2758
    • 8c Rakesh KP, Wang SM, Leng J, Ravindar L, Asiri AM, Marwani HM, Qin HL. Anticancer Agents Med. Chem. 2018; 18: 488
    • 9a Miller JF, Andrews CW, Brieger M, Furfine ES, Hale MR, Hanlon MH, Hazen RJ, Kaldor I, McLean EW, Reynolds D, Sammond DM, Spaltenstein A, Tung R, Turner EM, Xu RX, Sherrill RG. Bioorg. Med. Chem. Lett. 2006; 16: 1788
    • 9b Ermann M, Riether D, Walker ER, Mushi IF, Jenkins JE, Noya-Marino B, Brewer ML, Taylor MG, Amouzegh P, East SP, Dymock BW, Gemkow MJ, Kahrs AF, Ebneth A, Lobbe S, O'Shea K, Shih DT, Thomson D. Bioorg. Med. Chem. Lett. 2008; 18: 1725
    • 9c Shafique M, Hameed S, Naseer MM, Al-Masoudi NA. Mol. Diversity 2018; 22: 957
  • 10 Liu DQ, Sun M, Kord AS. J. Pharm. Biomed. Anal. 2010; 51: 999

    • For examples of Pd- or Cu-catalyzed N-arylation of sulfonamide reactions, see:
    • 11a He H, Wu YJ. Tetrahedron Lett. 2003; 44: 3385
    • 11b Teo YC, Yong FF. Synlett 2011; 6: 837
    • 11c Shekhar S, Dunn TB, Kotecki BJ, Montavon DK, Cullen SC. J. Org. Chem. 2011; 76: 4552
    • 11d Wang X, Guram A, Ronk M, Milne JE, Tedrow JS, Faul MM. Tetrahedron Lett. 2012; 53: 7
    • 11e Teo YC, Yong FF, Ithnin IK, Yio SH. T, Lin ZY. Eur. J. Org. Chem. 2013; 515
    • 11f Nasrollahzadeh M, Ehsani A, Maham M. Synlett 2014; 25: 505
    • 11g Geng X, Mao S, Chen LS, Yu JJ, Han JW, Hua JL, Wang LM. Tetrahedron Lett. 2014; 55: 3856
    • 11h Moon SY, Koh M, Rathwell K, Jung SH, Kim WS. Tetrahedron 2015; 71: 1566
    • 11i Jiang Y, You Y, Dong W, Peng Z, Zhang Y, An D. J. Org. Chem. 2017; 82: 5810
    • 11j Vantourout JC, Li L, Bendito-Moll E, Chabbra S, Arrington K, Bode BE, Isidro-Llobet A, Kowalski JA, Nilson MG, Wheelhouse KM. P, Woodard JL, Xie SP, Leitch DC, Watson AJ. B. ACS Catal. 2018; 8: 9560
    • 11k Becica J, Hruszkewycz DP, Steves JE, Elward JM, Leitch DC, Dobereiner GE. Org. Lett. 2019; 21: 8981
    • 11l West MJ, Thomson B, Vantourout JC, Watson AJ. B. Asian. J. Org. Chem. 2019; DOI: in press; 10.1002/ajoc.201900617.
    • 11m Zu WS, Liu S, Jia X, Xu L. Org. Chem. Front. 2019; 6: 1356

      For some reviews of the application of diaryliodonium salts, see:
    • 12a Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
    • 12b Yoshimura A, Saito A, Zhdankin VV. Chemistry 2018; 24: 15156
    • 12c Wang M, Chen S, Jiang X. Chem. Asian J. 2018; 13: 2195
    • 13a Bigot A, Williamson AE, Gaunt MJ. J. Am. Chem. Soc. 2011; 133: 13778
    • 13b Harvey JS, Simonovich SP, Jamison CR, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 13782
    • 13c Zhu S, MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 10815
    • 13d Guo J, Dong SX, Zhang YL, Kuang YL, Liu XH, Lin LL, Feng XM. Angew. Chem. Int. Ed. 2013; 52: 10245
    • 13e Cahard E, Male HP, Tissot M, Gaunt MJ. J. Am. Chem. Soc. 2015; 137: 7986
    • 13f Beaud R, Phipps RJ, Gaunt MJ. J. Am. Chem. Soc. 2016; 138: 13183
    • 13g Hamaguchi N, Kuriyama M, Onomura O. Tetrahedron: Asymmetry 2016; 27: 177
    • 13h Lukamto DH, Gaunt MJ. J. Am. Chem. Soc. 2017; 139: 9160
    • 13i Wu H, Wang Q, Zhu J. Chem. Eur. J. 2017; 23: 13037
    • 13j Wu H, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2018; 57: 2721
    • 14a Xu SB, Zhao K, Gu ZH. Adv. Synth. Catal. 2018; 360: 3877
    • 14b Hou MQ, Deng RX, Gu ZH. Org. Lett. 2018; 20: 5779
    • 14c Li B, Chao ZY, Li CY, Gu ZH. J. Am. Chem. Soc. 2018; 140: 9400
    • 14d Zhu K, Xu K, Fang Q, Wang Y, Tang B, Zhang FZ. ACS Catal. 2019; 9: 4951
    • 14e Xue XP, Gu ZH. Org. Lett. 2019; 21: 3942
    • 14f Li QG, Zhang MK, Zhan SM, Gu ZH. Org. Lett. 2019; 21: 6374
    • 14g Duan LH, Zhao K, Wang ZG, Zhang FL, Gu ZH. ACS Catal. 2019; 9: 9852
    • 15a Yang WQ, Liu YY, Zhang SS, Cai Q. Angew. Chem. Int. Ed. 2015; 54: 8805
    • 15b Yang WQ, Wang XY, Jin X, Sun H, Guo RN, Xu W, Cai Q. Adv. Synth. Catal. 2019; 361: 562
  • 16 General Procedure for the Asymmetric Intermolecular N-Arylation of Sulfonamide The diaryliodonium salt 1 (0.25 mmol, 1.0 equiv), sulfonamide 2 (0.30 mmol, 1.2 equiv), catalyst (0.025 mmol, 10 mol%), ligand L1 (0.0375 mmol, 15 mol%), and base (0.5 mmol, 2.0 equiv) were added to a 10 mL oven-dried Schlenk tube, followed by addition of anhydrous 1,2-dichloroethane (1.5 mL) under argon atmosphere. The mixture was stirred at room temperature for 15 h. Then the reaction mixture was poured into water (1.5mL) and extracted with dichloromethane (3 × 5 mL). The combined organic phase dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give the desired product 3. (S)-Ethyl 3-(2-Iodophenyl)-3-[2-(phenylsulfonamido)phenyl]propanoate (3a) Yield 128.3 mg (96%); white solid, mp 83.4–84.2 °C; [α]D 25 –13.4 (c 0.35, CHCl3, 88% ee). HPLC Chiralpak AD-H (hexane/i-PrOH = 6:4, 1.0 mL/min): τmajor = 14.7 min, τminor = 10.0 min. 1H NMR (400 MHz, CDCl3): δ = 7.84 (d, J = 7.6 Hz, 1 H), 7.75 (d, J = 7.2 Hz, 2 H), 7.54 (d, J = 7.6 Hz, 1 H), 7.46 (t, J = 7.6 Hz, 1 H), 7.36 (t, J = 7.6 Hz, 2 H), 7.23–7.18 (m, 2 H), 7.17–7.10 (m, 2 H), 7.01 (br s, 1 H), 6.96–6.90 (m, 2 H), 4.67 (dd, J = 9.2, 6.0 Hz, 1 H), 4.08–3.99 (m, 2 H), 2.87 (dd, J = 16.0, 6.0 Hz, 1 H), 2.62 (dd, J = 16.4, 9.2 Hz, 1 H), 1.10 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 171.0, 143.9, 140.3, 140.0, 134.8, 133.4, 132.8, 129.0, 129.0, 128.8, 128.5, 127.9, 127.8, 127.2, 125.6, 123.2, 101.1, 60.9, 45.3, 40.1, 14.1. ESI-MS: m/z = 558.0 [M + Na]+. HRMS (ESI): m/z [M + Na]+ calcd for C23H22INNaO4S: 558.0206; found: 558.0207. (S)-Ethyl 3-(2-Iodophenyl)-3-[2-(2-methylphenylsulfonamido)phenyl]propanoate (3b) Yield 129.0 mg (94%); white solid, mp 82.3–83.2 °C; [α]D 25 –6.5 (c 0.95, CHCl3, 87% ee). HPLC Chiralpak AD-H (hexane/i-PrOH = 7:3, 1.0 mL/min): τmajor = 11.1 min, τminor = 10.3 min. 1H NMR (400 MHz, CDCl3): δ = 7.98 (dd, J = 8.0, 1.2 Hz, 1 H), 7.85 (dd, J = 8.0, 1.2 Hz, 1 H), 7.41 (t, J = 7.6 Hz, 1 H), 7.30–7.25 (m, 3 H), 7.22 (br s, 1 H), 7.20 (dd, J = 8.0, 1.6 Hz, 1 H), 7.15–7.04 (m, 4 H), 6.94 (td, J = 8.0, 1.6 Hz, 1 H), 4.87 (dd, J = 9.6, 6.4 Hz, 1 H), 4.10–4.04 (m, 2 H), 2.95 (dd, J = 16.4, 6.0 Hz, 1 H), 2.75 (dd, J = 16.4, 9.2 Hz, 1 H), 2.58 (s, 3 H), 1.13 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 171.3, 144.1, 140.3, 139.0, 137.5, 135.1, 132.9, 132.8, 132.7, 129.4, 129.0, 128.7, 128.3, 127.9, 127.7, 126.3, 125.1, 122.1, 101.3, 60.9, 45.2, 40.2, 20.4, 14.0. ESI-MS: m/z 572.0 [M + Na]+. HRMS (ESI): m/z [M + Na]+ calcd for C24H24INNaO4S: 572.0363; found: 572.0363. (S)-Ethyl 3-[2-(3-Bromophenylsulfonamido)phenyl]-3-(2-iodophenyl)propanoate (3c) Yield 118.2 mg (77%); white solid, mp 154.2–154.7 °C; [α]D 25 –6.8 (c 0.31, CHCl3, 86% ee). HPLC Chiralpak AD-H (hexane/i-PrOH = 7:3, 1.0 mL/min): τmajor = 15.8 min, τminor = 10.3 min. 1H NMR (400 MHz, CDCl3): δ = 7.93 (t, J = 1.6 Hz, 1 H),7.85 (d, J = 8.0 Hz, 1 H), 7.63 (d, J = 7.6 Hz, 1 H), 7.55 (t, J = 8.0 Hz, 2 H), 7.25–7.15 (m, 5 H), 7.09 (br s, 1 H), 6.94–6.90 (m, 2 H), 4.63 (dd, J = 10.0, 5.2 Hz, 1 H), 4.10–4.01 (m, 2 H), 2.90 (dd, J = 16.8, 5.6 Hz, 1 H), 2.72 (dd, J = 16.4, 10.0 Hz, 1 H), 1.11 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 171.1, 143.8, 141.7, 140.4, 135.9, 134.5, 133.6, 130.5, 130.0, 129.1, 128.8, 128.4, 128.1, 128.0, 125.9, 125.7, 123.5, 122.9, 101.0, 61.0, 45.2, 40.1, 14.1. ESI-MS: m/z 635.9 [M + Na]+. HRMS (ESI): m/z [M + Na]+ calcd for C23H21BrINNaO4S: 635.9312; found: 635.9312.