Synthesis 2021; 53(04): 731-753
DOI: 10.1055/s-0040-1706547
paper

Inter- and Intramolecular Cycloaddition Reactions of Ethenetricarboxylates with Styrenes and Halostyrenes

Shoko Yamazaki
a   Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan   Email: yamazaks@cc.nara-edu.ac.jp
,
Zhichao Wang
b   Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan
,
Kentaro Iwata
a   Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan   Email: yamazaks@cc.nara-edu.ac.jp
,
Khotaro Katayama
a   Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan   Email: yamazaks@cc.nara-edu.ac.jp
,
Hirotaka Sugiura
b   Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan
,
Yuji Mikata
c   KYOUSEI Science Center, Nara Women’s University, Nara 630-8506, Japan
,
Tsumoru Morimoto
d   Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), Takayama, Ikoma, Nara 630-0192, Japan
,
Akiya Ogawa
b   Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan
› Author Affiliations
This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) (KAKENHI Grant Number JP26410048).


Abstract

Inter- and intramolecular cycloaddition reactions of ethenetricarboxylates with styrenes and α-halostyrenes have been investigated. The reactions of ethenetricarboxylates with styrenes or α-bromostyrenes in the presence of SnCl4 or SnBr4 stereoselectively gave 2,4-cis-substituted cyclobutanes. The intramolecular cycloaddition reactions of a series of styrene-functionalized ethenetricarboxylate amides, including in situ generated derivatives, showed high diversity of reaction modes depending on the structures and substituents of the substrates. The regioselectivity and stereoselectivity of the reactions as well as reaction mechanisms were discussed based on the DFT calculations.

Supporting Information



Publication History

Received: 25 August 2020

Accepted after revision: 24 September 2020

Article published online:
02 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Chen S, Shan G, Nie P, Rao Y. Asian J. Org. Chem. 2015; 4: 16
    • 2b Namyslo JC, Kaufmann DE. Chem. Rev. 2003; 103: 1485
    • 2c Lee-Ruff E, Mladenova G. Chem. Rev. 2003; 103: 1449
    • 2d Matsuo J. Tetrahedron Lett. 2014; 55: 2589
    • 4a Kriis K, Ausmees K, Pehk T, Lopp M, Kanger T. Org. Lett. 2010; 12: 2230
    • 4b Ausmees K, Kriis K, Pehk T, Werner F, Järving I, Lopp M, Kanger T. J. Org. Chem. 2012; 77: 10680
    • 4c Reinart-Okugbeni R, Ausmees K, Kriis K, Werner F, Rinken A, Kanger T. Eur. J. Med. Chem. 2012; 55: 255
    • 4d Araki T, Ozawa T, Yokoe H, Kanematsu M, Yoshida M, Shishido K. Org. Lett. 2013; 15: 200
    • 4e Hoshikawa T, Tanji K, Matsuo J, Ishibashi H. Chem. Pharm. Bull. 2012; 60: 548
    • 4f Padwa A, Lipka H, Watterson SH, Murphree SS. J. Org. Chem. 2003; 68: 6238
    • 4g Brummond KM, Chen D. Org. Lett. 2005; 7: 3473
    • 4h Ovaska TV, Kyne RE. Tetrahedron Lett. 2008; 49: 376
  • 5 Huisgen R. Acc. Chem. Res. 1977; 10: 117
    • 6a Hu J.-L, Feng L.-W, Wang L, Xie Z, Tang Y, Li X. J. Am. Chem. Soc. 2016; 138: 13151
    • 6b Parsons AT, Johnson JS. J. Am. Chem. Soc. 2009; 131: 14202
    • 6c Baar MR, Ballesteros P, Roberts BW. Tetrahedron Lett. 1986; 27: 2083
    • 6d Yamazaki S, Tanaka M, Inoue T, Morimoto N, Kumagai H, Yamamoto K. J. Org. Chem. 1995; 60: 6546
    • 6e De-Nanteuil F, Waser J. Angew. Chem. Int. Ed. 2013; 52: 9009
    • 7a De Keyser J.-L, De Cock CJ. C, Poupaert JH, Dumont P. J. Org. Chem. 1988; 53: 4859
    • 7b Ballesteros P, Roberts BW. Org. Synth. Coll. Vol. 7 1990; 142
    • 8a Yamazaki S, Yamamoto Y, Fukushima Y, Takebayashi M, Ukai T, Mikata Y. J. Org. Chem. 2010; 75: 5216
    • 8b Yamazaki S, Takebayashi M, Miyazaki K. J. Org. Chem. 2010; 75: 1188
    • 8c Yamazaki S, Iwata Y, Fukushima Y. Org. Biomol. Chem. 2009; 7: 655
    • 8d Morikawa S, Yamazaki S, Tsukada M, Izuhara S, Morimoto T, Kakiuchi K. J. Org. Chem. 2007; 72: 6459
    • 8e Yamazaki S, Iwata Y. J. Org. Chem. 2006; 71: 739
    • 8f Yamazaki S, Ueda K, Fukushima Y, Ogawa A, Kakiuchi K. Eur. J. Org. Chem. 2014; 7023
    • 8g Yamazaki S, Maenaka Y, Fujinami K, Mikata Y. RSC Adv. 2012; 2: 8095
    • 9a Srisiri W, Padias AB, Hall HK. Jr. J. Org. Chem. 1994; 59: 5424
    • 9b Engler TA, Combrink KD, Letavic MA, Lynch KO. Jr, Ray JE. J. Org. Chem. 1994; 59: 6567
    • 9c Murphy WS, Neville D. Tetrahedron Lett. 1996; 37: 9397
    • 9d Wang L, Lv J, Li S, Luo S. Org. Lett. 2017; 19: 3366
    • 10a Okamoto K, Tamura E, Ohe K. Angew. Chem. Int. Ed. 2013; 52: 10639
    • 10b Qin Y, Lv J, Luo S, Cheng J.-P. Org. Lett. 2014; 16: 5032
    • 11a Hsu D.-S, Huang J.-Y. J. Org. Chem. 2012; 77: 2659
    • 11b Manning WB. Tetrahedron Lett. 1979; 20: 1661
    • 11c Zheng M, Wu F, Chen K, Zhu S. Org. Lett. 2016; 18: 3554
    • 11d Diment A, Ritchie E, Taylor WC. Aust. J. Chem. 1969; 22: 1721
    • 11e Stranix BR, Darling GD. J. Org. Chem. 1997; 62: 9001
    • 11f Carreño MC, Mahugo J, Urbano A. Tetrahedron Lett. 1997; 38: 3047
    • 11g Bhojgude SS, Bhunia A, Gonnade RG, Biju AT. Org. Lett. 2014; 16: 676
    • 11h Kolis SP, Chordia MD, Liu R, Kopach ME, Harman WD. J. Am. Chem. Soc. 1998; 120: 2218
    • 11i Parker KA, Ruder SM. J. Am. Chem. Soc. 1989; 111: 5948
    • 11j Newman MS, Dhawan B, Hashem MM, Khanna VK, Springer JM. J. Org. Chem. 1976; 41: 3925
  • 12 Snider BB, Roush DM. J. Org. Chem. 1979; 44: 4229
    • 13a Yamazaki S, Sugiura H, Ohashi S, Ishizuka K, Saimu R, Mikata Y, Ogawa A. J. Org. Chem. 2016; 81: 10863
    • 13b Sugiura H, Yamazaki S, Go K, Ogawa A. Eur. J. Org. Chem. 2019; 204
  • 14 Seechurn CC. C. J, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 15 Chan PW. H, Kamijo S, Yamamoto Y. Synlett 2001; 910
    • 16a Holt C, Alachouzos G, Frontier AJ. J. Am. Chem. Soc. 2019; 141: 5461
    • 16b Alachouzos G, Frontier AJ. J. Am. Chem. Soc. 2019; 141: 118
    • 16c Alachouzos G, Frontier AJ. Angew. Chem. Int. Ed. 2017; 56: 15030
    • 16d Zhou X, Zhang H, Xie X, Li Y. J. Org. Chem. 2008; 73: 3958
  • 17 Schubert WM, Barfknecht GW. J. Am. Chem. Soc. 1970; 92: 207
    • 18a Ko C, Feltenberger JB, Ghosh SK, Hsung RP. Org. Lett. 2008; 10: 1971
    • 18b Nakano S, Kakugawa K, Nemoto T, Hamada Y. Adv. Synth. Catal. 2014; 356: 2088
    • 18c Luzung MR, Mauleón P, Toste FD. J. Am. Chem. Soc. 2007; 129: 12402
    • 18d Ranieri B, Obradors C, Mato M, Echavarren AM. Org. Lett. 2016; 18: 1614
    • 18e Gulías M, Collado A, Trillo B, López F, Oñate E, Esteruelas MA, Mascareñas JL. J. Am. Chem. Soc. 2011; 133: 7660
    • 18f Zhao J.-F, Loh T.-P. Angew. Chem. Int. Ed. 2009; 48: 7232
    • 19a Sternbach DD, Rossana DM. Tetrahedron Lett. 1982; 23: 303
    • 19b Jung ME, Street LJ. J. Am. Chem. Soc. 1984; 106: 8327
    • 19c Sternbach DD, Rossana DM, Onan KD. Tetrahedron Lett. 1985; 26: 591
    • 19d Jung ME. Synlett 1990; 186
    • 19e Jung ME, Gervay J. Tetrahedron Lett. 1990; 31: 4685
    • 19f Jung ME, Gervay J. J. Am. Chem. Soc. 1991; 113: 224
    • 19g Hudlicky T, Butora G, Fearnley SP, Gum AG, Persichini PJ. III, Stabile MR, Merola JS. J. Chem. Soc., Perkin Trans. 1 1995; 2393
    • 19h Giessner-Prettre C, Hückel S, Maddaluno J, Jung ME. J. Org. Chem. 1997; 62: 1439
    • 19i Jung ME, Kiankarimi M. J. Org. Chem. 1998; 63: 2968
    • 19j Schwan AL, Snelgrove JL, Kalin ML, Froese RD. J, Morokuma K. Org. Lett. 1999; 1: 487
    • 19k Jung ME, Min S.-J. J. Am. Chem. Soc. 2005; 127: 10834
    • 19l Padwa A, Wang Q. J. Org. Chem. 2006; 71: 3210
    • 19m Paulvannan K, Jacobs JW. Tetrahedron 1999; 55: 7433
    • 20a Townsend SD, Ross AG, Liu K, Danishefsky SJ. Proc. Natl. Acad. Sci. U.S.A. 2014; 111: 7931
    • 20b Meinwald J, Tufariello JJ, Hurst JJ. J. Org. Chem. 1964; 29: 2914
    • 20c Corey EJ, Bass JD, LeMahieu R, Mitra RB. J. Am. Chem. Soc. 1964; 86: 5570
    • 20d Wiberg KB, Hiatt JE, Hseih K. J. Am. Chem. Soc. 1970; 92: 544
    • 20e Wiberg KB, Pfeiffer JG. J. Am. Chem. Soc. 1970; 92: 553
  • 21 Oppolzer W, Achini R, Pfenninger E, Weber HP. Helv. Chim. Acta 1976; 59: 1186
  • 22 The structure of the byproduct 34 was deduced from the spectra and our previous result: Yamazaki S, Fujinami K, Maitoko Y, Ueda K, Kakiuchi K. J. Org. Chem. 2013; 78: 8405
    • 23a Becke AD. J. Chem. Phys. 1993; 98: 5648
    • 23b Lee C, Yang W, Parr RG. Phys. Rev. B 1998; 37: 785
  • 24 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D.01. Gaussian, Inc; Wallingford CT: 2009
    • 25a Cancès E, Mennucci B, Tomasi J. J. Chem. Phys. 1997; 107: 3032
    • 25b Cossi M, Barone V, Mennucci B, Tomasi J. Chem. Phys. Lett. 1998; 286: 253
    • 25c Mennucci B, Tomasi J. J. Chem. Phys. 1997; 106: 5151
    • 26a Fukui K. J. Phys. Chem. 1970; 74: 4161
    • 26b Gonzalez C, Schlegel HB. J. Phys. Chem. 1989; 90: 2154
  • 27 Yamazaki S, Ohmitsu K, Ohi K, Otsubo T, Moriyama K. Org. Lett. 2005; 7: 759
  • 28 Barluenga J, Fañanás FJ, Sanz R, Marcos C, Ignacio JM. Chem. Commun. 2005; 933
  • 29 Saputra MA, Ngo L, Kartika R. J. Org. Chem. 2015; 80: 8815
  • 30 Sato AH, Mihara S, Iwasawa T. Tetrahedron Lett. 2012; 53: 3585
  • 31 Suga H, Hamatani T, Guggisberg Y, Schlosser M. Tetrahedron 1990; 46: 4255
    • 32a Olsen DK, Torian BE, Morgan CD, Braun LL. J. Org. Chem. 1980; 45: 4049
    • 32b Schlummer B, Hartwig JF. Org. Lett. 2002; 4: 1471
  • 33 Ravinder B, Rajeswar RS, Panasa RA, Rakeshwar B. Tetrahedron Lett. 2013; 54: 4908