Synlett 2021; 32(07): 697-700
DOI: 10.1055/s-0040-1706012
letter

Efficient Synthesis of 7,8-Dihydro-6H-benzo[c]chromen-6-one Derivatives by Base-Mediated Chemoselective Annulation of Alkylidene Malononitriles with α,β-Unsaturated Coumarins

Abdolali Alizadeh
a   Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
,
Behnaz Farajpour
a   Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
,
Mojtaba Khanpour
b   State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. of China
› Author Affiliations
We gratefully thank Tarbiat Modares University for financial support.


Abstract

An efficient and chemoselective synthesis of biologically valuable 7,8-dihydro-6H-benzo[c]chromen-6-ones is described. In this method, neither a metal catalyst nor expensive starting materials are needed, and the products can be purified by simple filtration and washing with EtOH. Readily available starting materials, green and mild conditions, synthetically useful yields, and operational simplicity are some highlighted advantages of this unprecedented transformation.

Supporting Information



Publication History

Received: 03 December 2020

Accepted after revision: 04 January 2021

Article published online:
22 January 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Garazd L, Garazd MM. Chem. Nat. Compd. 2016; 52: 1
    • 1b Mao Z, Sun W, Fu L, Luo H, Lai D, Zhou L. Molecules 2014; 19: 5088
    • 1c Raistrick H, Stilkings CE, Thomas R. Biochem. J. 1953; 55: 421
    • 1d Pero RW, Harvan D, Blois MC. Tetrahedron Lett. 1973; 14: 945
    • 1e Lv H.-N, Tu P.-F, Jiang Y. Mini Rev. Med. Chem. 2014; 14: 603
  • 2 Koch K, Podlech J, Pfeiffer E, Metzler M. J. Org. Chem. 2005; 70: 3275
  • 3 Meng X, Mao Z, Lou J, Xu L, Zhong L, Peng Y, Zhou L, Wang M. Molecules 2012; 17: 11303
  • 4 Zhang M, Deng Y, Zhang H.-B, Su X.-L, Chen HL, Yu T, Guo P. Chem. Pharm. Bull. 2008; 56: 192
  • 5 Asami Y, Ogura T, Otake N, Nishimura T, Xinsheng Y, Sakurai T, Nagasawa H, Sakuda S, Tatsuta K. J. Nat. Prod. 2003; 66: 729
  • 6 Takahashi K, Tomita F. J. Antibiot. 1983; 36: 1531
    • 7a Strelitz F, Flon H, Asheshov IN. J. Bacteriol. 1955; 69: 280
    • 7b Weiss U, Yoshihira K, Highet RJ, White RJ, Wei TT. J. Antibiot. 1982; 35: 1194
  • 8 Sehgal SN, Czerkawski H, Kudelski A, Pandev K, Saucier R, Vézina C. J. Antibiot. 1983; 36: 355
    • 9a Edwards JP, West SJ, Marschke KB, Mais DE, Gottardis M, Jones TK. J. Med. Chem. 1998; 41: 303
    • 9b Hamann LG, Higuchi RI, Zhi L, Edwards JP, Wang X.-N, Marschke KB, Kong JW, Farmer LJ, Jones TK. J. Med. Chem. 1998; 41: 623
    • 9c Coghlan MJ, Kym PR, Elmore SW, Wang AX, Luly JR, Wilcox D, Stashko M, Lin C.-W, Miner J, Tyree C, Nakane M, Jacobson P, Lane BC. J. Med. Chem. 2001; 44: 2879
  • 10 Zhang Y, Tian Y, Xiang P, Huang N, Wang J, Xu J.-H, Zhang M. Org. Biomol. Chem. 2016; 14: 9874
  • 11 Huang L, Weix DJ. Org. Lett. 2016; 18: 5432
  • 12 Dao PD. Q, Ho SL, Lim H.-J, Cho CS. J. Org. Chem. 2018; 83: 4140
  • 13 Inamoto K, Kadokawa J, Kondo Y. Org. Lett. 2013; 15: 3962
    • 14a Dong Y, Yu J.-T, Sun S, Cheng J. Chem. Commun. 2020; 56: 6688
    • 14b Pottie IR, Nandaluru PR, Benoit WL, Miller DO, Dawe LN, Bodwell GJ. J. Org. Chem. 2011; 76: 9015
    • 14c Luo Z, Gao Z.-H, Song Z.-Y, Han Y.-F, Ye S. Org. Biomol. Chem. 2019; 17: 4212
  • 15 Dai J.-J, Xu W.-T, Wu Y.-D, Zhang W.-M, Gong Y, He X.-P, Zhang X.-Q, Xu H.-J. J. Org. Chem. 2015; 80: 911
  • 16 Dong Y, Yu J.-T, Sun S, Cheng J. Chem Commun. 2020; 56: 6688
  • 17 Luo S, Luo F.-X, Zhang X.-S, Shi Z.-J. Angew. Chem. Int. Ed. 2013; 52: 10598
    • 18a Cuia H.-L, Chen Y.-C. Chem. Commun. 2009; 4479
    • 18b Ji D.-S, Luo Y.-C, Hu X.-Q, Xu P.-F. Org. Lett. 2020; 22: 1028
    • 18c Alizadeh A, Hosseini SY, Sedighian H, Bayat F, Zhu Z, Dusek M. Tetrahedron 2015; 71: 7885
    • 19a Heber D, Ivanov IC, Karagiosov SK. J. Heterocycl. Chem. 1995; 32: 505
    • 19b Bochkov AY, Akchurin IO, Dyachenko OA, Traven VF. Chem. Commun. 2013; 49: 11653
    • 19c Patel AA, Lad HB, Pandya KR, Patel CV, Brahmbhatt DI. Med. Chem. Res. 2013; 22: 4745
    • 19d Bera R, Dhananjaya G, Nath S, Kumar R, Mukkanti K, Pal M. Tetrahedron 2009; 65: 1300
    • 19e Heber D. Arch. Pharm (Weinheim, Ger.) 1987; 320: 577
    • 19f Alizadeh A, Farajpour B, Mohammadi SS, Sedghi M, Naderi-Manesh H, Janiak C, Knedel T.-O. ChemistrySelect 2020; 5: 9362
    • 19g Alizadeh A, Farajpour B, Amir Ashjaee Asalemi K, Taghipour S. ChemistrySelect 2020; 5: 9834
    • 19h Alizadeh A, Amir Ashjei Asalemi K, Farajpour B, Halvagar MR. J. Iran. Chem. Soc. 2020; 17:  3393
    • 20a Soltau M, Göwert M, Margaretha P. Org. Lett. 2005; 7: 5159
    • 20b Chen J, Li Y, Xiao Z, He H, Gao S. Org. Lett. 2020; 22: 1485
    • 20c Darwish OS, Granum KA, Tan Q, Hsung RP. Tetrahedron Lett. 2001; 42: 3283
  • 21 7,8-Dihydro-6H-benzo[c]chromen-6-ones 3ai; General Procedure Et3N (0.5 mmol) was added to a mixture of the appropriate alkylidene malononitrile derivative 1 (0.5 mmol) and 4-chloro-3-(3-oxo-3-phenylprop-1-en-1-yl)-2H-chromen-2-one 2 (0.5 mmol) in anhyd EtOH (1 mL), and the mixture was stirred at 80 °C for 10 h until the reaction was complete (TLC). The resulting solid was isolated by simple filtration and washed twice with 96% EtOH. 6-Oxo-7-(2-oxo-2-phenylethyl)-9-phenyl-6H-benzo[c]chromene-8,8(7H)-dicarbonitrile (3a) White powder; yield: 0.34 g (77%); mp 284–286 °C. IR (KBr): 2229 (C≡N), 1732 (C=O), 1687 (COO), 1600, 1580, and 1500 (Ar), 1159, and 1085 (C–O) cm–1. 1H NMR (500 MHz, CDCl3): δ = 3.25 (dd, 2 J HH = 16.0 Hz, 3 J HH = 6.5 Hz, 1 H, CH1), 3.83 (dd, 2 J HH = 16.0 Hz, 3 J HH = 5.7 Hz, 1 H, CH1), 4.77 (t, 3 J HH = 6.0 Hz, 1 H, CH7), 7.27 (d, 3 J HH = 8.3 Hz, 2 H, 2CH ortho of Ph), 7.37 (t, 3 J HH = 7.5 Hz, 1 H, CH2 of coumarin), 7.43 (d, 3 J HH = 8.4 Hz, 1 H, CH4 of coumarin), 7.45 (t, 3 J HH = 7.6 Hz, 2 H, 2CH meta of Ph), 7.54–7.57 (m, 3 H, 3CH of Ph), 7.63 (s, 1 H, CH10), 7.63 (t, 3 J HH = 7.6 Hz, 1 H, CH3 of coumarin), 7.64 (t, 3 J HH = 7.9 Hz, 1 H, CH para of Ph), 7.73 (d, 3JHH = 8.0 Hz, 1 H, CH1 of coumarin), 7.92 (d, 3 J HH = 7.7 Hz, 2 H, 2CH ortho of Ph). 13C NMR (125 MHz, CDCl3): δ = 37.3 (CH8), 37.3 (CH7), 37.8 (CH2), 112.6 (CN), 113.4 (CN), 116.0 (C10b), 116.8 (C6a), 117.7 (CH4 of coumarin), 121.8 (CH10), 123.4 (CH2 of coumarin), 124.8 (CH1 of coumarin), 127.0 (2CH meta of Ph), 128.3 (2CH meta of Ph), 128.7 (2CH ortho of Ph), 129.2 (2CH ortho of Ph), 130.9 (CH para of Ph), 132.6 (CH3 of coumarin), 133.6 (CH para of Ph), 135.2 (C9), 136.1 (C of Ph), 137.8 (C of Ph), 139.8 (C10a), 153.5 (C4a), 159.4 (CO of coumarin), 194.9 (CO). MS (EI, 70 eV): m/z (%) = 442 (M+, 20), 416 (28), 297 (26), 105 (100), 77 (24). Anal. Calcd for C29H18N2O3 (442.46): C, 78.72; H, 4.10, N, 6.33. Found: C, 78.73; H, 4.12, N, 6.32.
  • 22 CCDC 1955482 contains the supplementary crystallographic data for compound 3c. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.