Semin Respir Crit Care Med 2020; 41(03): 386-399
DOI: 10.1055/s-0039-3399564
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Molecular Diagnostics in Non-Small Cell Lung Carcinoma

Lynette M. Sholl
1   Department of Pathology, Harvard Medical School, Boston, Massachusetts
2   Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
25 May 2020 (online)

Abstract

Current clinical practice guidelines recognize EGFR, BRAF, ALK, and ROS1 as essential molecular biomarkers, and a host of other genetic alterations as emerging biomarkers for non-small cell lung carcinoma patients. The available approaches to detecting relevant alterations in these genes are diverse and often complementary. Laboratories have increasingly migrated away from a “single-gene test” approach, embracing assays that incorporate panels of genes capable of detecting a diverse set of alterations. The adoption of next generation sequencing (NGS) techniques has driven this shift; however, the approach to incorporation of NGS varies greatly between practices. Choice of molecular diagnostics assay, be it single-gene or NGS-based panel, will be driven by cost, urgency, clinical and laboratory focus, and professional considerations. Preanalytic factors including operator expertise, sample type and choice of fixative, and postanalytic factors including informatics pipeline and approaches to variant reporting have a significant impact on the quality of molecular diagnostics results. There is no real “one-size-fits-all” test for genomic profiling for lung cancer; clinicians and laboratorians must be prepared to offer a diverse set of assays in order to address turnaround time requirements and optimize detection of critical but difficult-to-detect tumor alterations such as gene fusions.

 
  • References

  • 1 Johnson DH, Fehrenbacher L, Novotny WF. , et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 2004; 22 (11) 2184-2191
  • 2 Scagliotti GV, Parikh P, von Pawel J. , et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 2008; 26 (21) 3543-3551
  • 3 Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. , eds. Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart. Lyon: IARC Press; 2015
  • 4 Cetin K, Ettinger DS, Hei YJ, O'Malley CD. Survival by histologic subtype in stage IV nonsmall cell lung cancer based on data from the Surveillance, Epidemiology and End Results Program. Clin Epidemiol 2011; 3: 139-148
  • 5 Campbell JD, Alexandrov A, Kim J. , et al; Cancer Genome Atlas Research Network. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet 2016; 48 (06) 607-616
  • 6 Lindeman NI, Cagle PT, Aisner DL. , et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Mol Diagn 2018; 20 (02) 129-159
  • 7 National Comprehensive Cancer Network Guidelines Version 5 Non-Small Cell Lung Carcinoma 2019 . Available at: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf . Accessed June 27, 2019
  • 8 Swanton C, Govindan R. Clinical implications of genomic discoveries in lung cancer. N Engl J Med 2016; 374 (19) 1864-1873
  • 9 Socinski MA, Obasaju C, Gandara D. , et al. Current and emergent therapy options for advanced squamous cell lung cancer. J Thorac Oncol 2018; 13 (02) 165-183
  • 10 Ohtsuka K, Ohnishi H, Fujiwara M. , et al. Abnormalities of epidermal growth factor receptor in lung squamous-cell carcinomas, adenosquamous carcinomas, and large-cell carcinomas: tyrosine kinase domain mutations are not rare in tumors with an adenocarcinoma component. Cancer 2007; 109 (04) 741-750
  • 11 Kang SM, Kang HJ, Shin JH. , et al. Identical epidermal growth factor receptor mutations in adenocarcinomatous and squamous cell carcinomatous components of adenosquamous carcinoma of the lung. Cancer 2007; 109 (03) 581-587
  • 12 Lindeman NI, Cagle PT, Beasley MB. , et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Arch Pathol Lab Med 2013; 137 (06) 828-860
  • 13 Travis WD, Brambilla E, Riely GJ. New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol 2013; 3 1 (08) 992-1001
  • 14 Yatabe Y, Dacic S, Borczuk AC. , et al. Best practices recommendations for diagnostic immunohistochemistry in lung cancer. J Thorac Oncol 2019; 14 (03) 377-407
  • 15 Travis WD, Brambilla E, Noguchi M. , et al. Diagnosis of lung cancer in small biopsies and cytology: implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification. Arch Pathol Lab Med 2013; 137 (05) 668-684
  • 16 Hutchings D, Maleki Z, Rodriguez EF. Pulmonary non-small cell carcinoma with morphologic features of adenocarcinoma or “non-small cell carcinoma favor adenocarcinoma” in cytologic specimens share similar clinical and molecular genetic characteristics. Am J Clin Pathol 2018; 149 (06) 514-521
  • 17 Ilie M, Butori C, Lassalle S. , et al. Optimization of EGFR mutation detection by the fully-automated qPCR-based Idylla system on tumor tissue from patients with non-small cell lung cancer. Oncotarget 2017; 8 (61) 103055-103062
  • 18 Janku F, Huang HJ, Claes B. , et al. BRAF mutation testing in cell-free DNA from the plasma of patients with advanced cancers using a rapid, automated molecular diagnostics system. Mol Cancer Ther 2016; 15 (06) 1397-1404
  • 19 Reckamp KL, Melnikova VO, Karlovich C. , et al. A highly sensitive and quantitative test platform for detection of NSCLC EGFR mutations in urine and plasma. J Thorac Oncol 2016; 11 (10) 1690-1700
  • 20 Eisenberg R, Varmus H. Insurance for broad genomic tests in oncology. Science 2017; 358 (6367): 1133-1134
  • 21 CMS to Cover NGS Companion Diagnostics. Cancer Discov 2018; 8: 522
  • 22 Rizzo JM, Buck MJ. Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev Res (Phila) 2012; 5 (07) 887-900
  • 23 Sacher AG, Paweletz C, Dahlberg SE. , et al. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol 2016; 2 (08) 1014-1022
  • 24 Oxnard GR, Paweletz CP, Sholl LM. Genomic analysis of plasma cell-free DNA in patients with cancer. JAMA Oncol 2017; 3 (06) 740-741
  • 25 Sholl LM, Do K, Shivdasani P. , et al. Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight 2016; 1 (19) e87062
  • 26 Garcia EP, Minkovsky A, Jia Y. , et al. Validation of OncoPanel: a targeted next-generation sequencing assay for the detection of somatic variants in cancer. Arch Pathol Lab Med 2017; 141 (06) 751-758
  • 27 Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 2011; 13 (01) 36-46
  • 28 Zheng Z, Liebers M, Zhelyazkova B. , et al. Anchored multiplex PCR for targeted next-generation sequencing. Nat Med 2014; 20 (12) 1479-1484
  • 29 Williams HL, Walsh K, Diamond A, Oniscu A, Deans ZC. Validation of the Oncomine focus panel for next-generation sequencing of clinical tumour samples. Virchows Arch 2018; 473 (04) 489-503
  • 30 Benayed R, Offin M, Mullaney K. , et al. High yield of rna sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden. Clin Cancer Res 2019; 25 (15) 4712-4722
  • 31 Tsao MS, Hirsch FR, Yatabe Y. , eds. IASLC Atlas of ALK and ROS1 Testing in Lung Cancer. 2nd ed. Aurora, CO: International Association for the Study of Lung Cancer; 2016
  • 32 Schrock AB, Zhu VW, Hsieh WS. , et al. Receptor tyrosine kinase fusions and BRAF kinase fusions are rare but actionable resistance mechanisms to EGFR tyrosine kinase inhibitors. J Thorac Oncol 2018; 13 (09) 1312-1323
  • 33 Jayasinghe RG, Cao S, Gao Q. , et al; Cancer Genome Atlas Research Network. Systematic analysis of splice-site-creating mutations in cancer. Cell Reports 2018; 23 (01) 270-281 .e3
  • 34 Lek M, Karczewski KJ, Minikel EV. , et al; Exome Aggregation Consortium. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016; 536 (7616): 285-291
  • 35 Genome Aggregation Database (gnomAD). Available at: https://gnomad.broadinstitute.org/ . Accessed June 29, 2019
  • 36 Gray SW, Gagan J, Cerami E. , et al. Interactive or static reports to guide clinical interpretation of cancer genomics. J Am Med Inform Assoc 2018; 25 (05) 458-464
  • 37 Li MM, Datto M, Duncavage EJ. , et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the association for molecular pathology, american society of clinical oncology, and college of american pathologists. J Mol Diagn 2017; 19 (01) 4-23
  • 38 Ernst C, Hahnen E, Engel C. , et al. Performance of in silico prediction tools for the classification of rare BRCA1/2 missense variants in clinical diagnostics. BMC Med Genomics 2018; 11 (01) 35
  • 39 COSMIC: The Catalogue of Somatic Mutations in Cancer. 2019 . Available at: https://cancer.sanger.ac.uk/cosmic . Accessed June 29, 2019
  • 40 cBioPortal for Cancer Genomics; 2019 . Available at: https://www.cbioportal.org/ . Accessed June 29, 2019
  • 41 Chakravarty D, Gao J, Phillips SM. , et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol 2017 ; doi:10.1200/PO.17.00011
  • 42 My Cancer Genome. Available at: https://www.mycancergenome.org/ . Accessed June 29, 2019
  • 43 Moore DA, Kushnir M, Mak G. , et al. Prospective analysis of 895 patients on a UK Genomics Review Board. ESMO Open 2019; 4 (02) e000469
  • 44 Kris MG, Johnson BE, Berry LD. , et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 2014; 311 (19) 1998-2006
  • 45 Li C, Fang R, Sun Y. , et al. Spectrum of oncogenic driver mutations in lung adenocarcinomas from East Asian never smokers. PLoS One 2011; 6 (11) e28204
  • 46 Arrieta O, Cardona AF, Martín C. , et al. Updated frequency of EGFR and KRAS mutations in nonsmall-cell lung cancer in Latin America: the Latin-American consortium for the investigation of lung cancer (CLICaP). J Thorac Oncol 2015; 10 (05) 838-843
  • 47 Shigematsu H, Lin L, Takahashi T. , et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 2005; 97 (05) 339-346
  • 48 Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7 (03) 169-181
  • 49 Lynch TJ, Bell DW, Sordella R. , et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350 (21) 2129-2139
  • 50 Paez JG, Jänne PA, Lee JC. , et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304 (5676): 1497-1500
  • 51 Mok TS, Wu YL, Thongprasert S. , et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361 (10) 947-957
  • 52 Ramalingam SS, Yang JC, Lee CK. , et al. Osimertinib as first-line treatment of egfr mutation-positive advanced non-small-cell lung cancer. J Clin Oncol 2018; 36 (09) 841-849
  • 53 Russo A, Franchina T, Ricciardi G, Battaglia A, Picciotto M, Adamo V. Heterogeneous responses to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in patients with uncommon EGFR mutations: new insights and future perspectives in this complex clinical scenario. Int J Mol Sci 2019; 20 (06) 20
  • 54 Yasuda H, Park E, Yun CH. , et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med 2013; 5 (216) 216ra177
  • 55 Sequist LV, Waltman BA, Dias-Santagata D. , et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011; 3 (75) 75ra26
  • 56 Bell DW, Gore I, Okimoto RA. , et al. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet 2005; 37 (12) 1315-1316
  • 57 Hu Y, Alden RS, Odegaard JI. , et al. Discrimination of germline EGFR T790M mutations in plasma cell-free DNA allows study of prevalence across 31,414 cancer patients. Clin Cancer Res 2017; 23 (23) 7351-7359
  • 58 Piotrowska Z, Isozaki H, Lennerz JK. , et al. Landscape of acquired resistance to osimertinib in EGFR-mutant NSCLC and clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion. Cancer Discov 2018; 8 (12) 1529-1539
  • 59 Sholl LM, Xiao Y, Joshi V. , et al. EGFR mutation is a better predictor of response to tyrosine kinase inhibitors in non-small cell lung carcinoma than FISH, CISH, and immunohistochemistry. Am J Clin Pathol 2010; 133 (06) 922-934
  • 60 Yu J, Kane S, Wu J. , et al. Mutation-specific antibodies for the detection of EGFR mutations in non-small-cell lung cancer. Clin Cancer Res 2009; 15 (09) 3023-3028
  • 61 Kitamura A, Hosoda W, Sasaki E, Mitsudomi T, Yatabe Y. Immunohistochemical detection of EGFR mutation using mutation-specific antibodies in lung cancer. Clin Cancer Res 2010; 16 (13) 3349-3355
  • 62 Brevet M, Arcila M, Ladanyi M. Assessment of EGFR mutation status in lung adenocarcinoma by immunohistochemistry using antibodies specific to the two major forms of mutant EGFR. J Mol Diagn 2010; 12 (02) 169-176
  • 63 Bondgaard AL, Høgdall E, Mellemgaard A, Skov BG. High specificity but low sensitivity of mutation-specific antibodies against EGFR mutations in non-small-cell lung cancer. Mod Pathol 2014; 27 (12) 1590-1598
  • 64 Seo AN, Park TI, Jin Y. , et al. Novel EGFR mutation-specific antibodies for lung adenocarcinoma: highly specific but not sensitive detection of an E746_A750 deletion in exon 19 and an L858R mutation in exon 21 by immunohistochemistry. Lung Cancer 2014; 83 (03) 316-323
  • 65 Cardarella S, Ogino A, Nishino M. , et al. Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. Clin Cancer Res 2013; 19 (16) 4532-4540
  • 66 Paik PK, Arcila ME, Fara M. , et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol 2011; 29 (15) 2046-2051
  • 67 Marchetti A, Felicioni L, Malatesta S. , et al. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol 2011; 29 (26) 3574-3579
  • 68 Litvak AM, Paik PK, Woo KM. , et al. Clinical characteristics and course of 63 patients with BRAF mutant lung cancers. J Thorac Oncol 2014; 9 (11) 1669-1674
  • 69 Planchard D, Besse B, Groen HJM. , et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol 2016; 17 (07) 984-993
  • 70 Planchard D, Kim TM, Mazieres J. , et al. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol 2016; 17 (05) 642-650
  • 71 Yao Z, Yaeger R, Rodrik-Outmezguine VS. , et al. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature 2017; 548 (7666): 234-238
  • 72 Sasaki H, Shimizu S, Tani Y. , et al. Usefulness of immunohistochemistry for the detection of the BRAF V600E mutation in Japanese lung adenocarcinoma. Lung Cancer 2013; 82 (01) 51-54
  • 73 Ilie M, Long E, Hofman V. , et al. Diagnostic value of immunohistochemistry for the detection of the BRAFV600E mutation in primary lung adenocarcinoma Caucasian patients. Ann Oncol 2013; 24 (03) 742-748
  • 74 Rodig SJ, Mino-Kenudson M, Dacic S. , et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res 2009; 15 (16) 5216-5223
  • 75 Inamura K, Takeuchi K, Togashi Y. , et al. EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset. Mod Pathol 2009; 22 (04) 508-515
  • 76 Kwak EL, Bang YJ, Camidge DR. , et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010; 363 (18) 1693-1703
  • 77 Aisner DL, Sholl LM, Berry LD. , et al; LCMC2 investigators. The impact of smoking and TP53 mutations in lung adenocarcinoma patients with targetable mutations-the lung cancer mutation consortium (LCMC2). Clin Cancer Res 2018; 24 (05) 1038-1047
  • 78 Soda M, Choi YL, Enomoto M. , et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007; 448 (7153): 561-566
  • 79 Rikova K, Guo A, Zeng Q. , et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007; 131 (06) 1190-1203
  • 80 Takeuchi K, Soda M, Togashi Y. , et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med 2012; 18 (03) 378-381
  • 81 Noh KW, Lee MS, Lee SE. , et al. Molecular breakdown: a comprehensive view of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer. J Pathol 2017; 243 (03) 307-319
  • 82 Solomon BJ, Mok T, Kim DW. , et al; PROFILE 1014 Investigators. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 2014; 371 (23) 2167-2177
  • 83 Peters S, Camidge DR, Shaw AT. , et al; ALEX Trial Investigators. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med 2017; 377 (09) 829-838
  • 84 Shaw AT, Kim DW, Mehra R. , et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 2014; 370 (13) 1189-1197
  • 85 Camidge DR, Kim HR, Ahn MJ. , et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med 2018; 379 (21) 2027-2039
  • 86 Gao X, Sholl LM, Nishino M, Heng JC, Jänne PA, Oxnard GR. Clinical implications of variant ALK FISH rearrangement patterns. J Thorac Oncol 2015; 10 (11) 1648-1652
  • 87 Rimkunas VM, Crosby KE, Li D. , et al. Analysis of receptor tyrosine kinase ROS1-positive tumors in non-small cell lung cancer: identification of a FIG-ROS1 fusion. Clin Cancer Res 2012; 18 (16) 4449-4457
  • 88 Suehara Y, Arcila M, Wang L. , et al. Identification of KIF5B-RET and GOPC-ROS1 fusions in lung adenocarcinomas through a comprehensive mRNA-based screen for tyrosine kinase fusions. Clin Cancer Res 2012; 18 (24) 6599-6608
  • 89 Shaw AT, Ou SH, Bang YJ. , et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 2014; 371 (21) 1963-1971
  • 90 Davies KD, Le AT, Sheren J. , et al. Comparison of molecular testing modalities for detection of ROS1 rearrangements in a cohort of positive patient samples. J Thorac Oncol 2018; 13 (10) 1474-1482
  • 91 Sholl LM, Sun H, Butaney M. , et al. ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am J Surg Pathol 2013; 37 (09) 1441-1449
  • 92 Warth A, Muley T, Dienemann H. , et al. ROS1 expression and translocations in non-small-cell lung cancer: clinicopathological analysis of 1478 cases. Histopathology 2014; 65 (02) 187-194
  • 93 Yoshida A, Tsuta K, Wakai S. , et al. Immunohistochemical detection of ROS1 is useful for identifying ROS1 rearrangements in lung cancers. Mod Pathol 2014; 27 (05) 711-720
  • 94 Mescam-Mancini L, Lantuéjoul S, Moro-Sibilot D. , et al. On the relevance of a testing algorithm for the detection of ROS1-rearranged lung adenocarcinomas. Lung Cancer 2014; 83 (02) 168-173
  • 95 Shan L, Lian F, Guo L. , et al. Detection of ROS1 gene rearrangement in lung adenocarcinoma: comparison of IHC, FISH and real-time RT-PCR. PLoS One 2015; 10 (03) e0120422
  • 96 Selinger CI, Li BT, Pavlakis N. , et al. Screening for ROS1 gene rearrangements in non-small-cell lung cancers using immunohistochemistry with FISH confirmation is an effective method to identify this rare target. Histopathology 2017; 70 (03) 402-411
  • 97 Su Y, Goncalves T, Dias-Santagata D, Hoang MP. Immunohistochemical detection of ROS1 fusion. Am J Clin Pathol 2017; 147 (01) 77-82
  • 98 Farago AF, Le LP, Zheng Z. , et al. Durable clinical response to entrectinib in NTRK1-rearranged non-small cell lung cancer. J Thorac Oncol 2015; 10 (12) 1670-1674
  • 99 Vaishnavi A, Capelletti M, Le AT. , et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med 2013; 19 (11) 1469-1472
  • 100 Drilon A, Laetsch TW, Kummar S. , et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 2018; 378 (08) 731-739
  • 101 Hechtman JF, Benayed R, Hyman DM. , et al. Pan-Trk immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am J Surg Pathol 2017; 41 (11) 1547-1551
  • 102 Rudzinski ER, Lockwood CM, Stohr BA. , et al. Pan-Trk immunohistochemistry identifies ntrk rearrangements in pediatric mesenchymal tumors. Am J Surg Pathol 2018; 42 (07) 927-935
  • 103 Hung YP, Fletcher CDM, Hornick JL. Evaluation of pan-TRK immunohistochemistry in infantile fibrosarcoma, lipofibromatosis-like neural tumour and histological mimics. Histopathology 2018; 73 (04) 634-644
  • 104 Hung YP, Jo VY, Hornick JL. Immunohistochemistry with a pan-TRK antibody distinguishes secretory carcinoma of the salivary gland from acinic cell carcinoma. Histopathology 2019; 75 (01) 54-62
  • 105 Ju YS, Lee WC, Shin JY. , et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 2012; 22 (03) 436-445
  • 106 Kohno T, Ichikawa H, Totoki Y. , et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med 2012; 18 (03) 375-377
  • 107 Wang R, Hu H, Pan Y. , et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol 2012; 30 (35) 4352-4359
  • 108 Lipson D, Capelletti M, Yelensky R. , et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012; 18 (03) 382-384
  • 109 Tsuta K, Kohno T, Yoshida A. , et al. RET-rearranged non-small-cell lung carcinoma: a clinicopathological and molecular analysis. Br J Cancer 2014; 110 (06) 1571-1578
  • 110 Kohno T, Nakaoku T, Tsuta K. , et al. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. Transl Lung Cancer Res 2015; 4 (02) 156-164
  • 111 Drilon A, Hu ZI, Lai GGY, Tan DSW. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol 2018; 15 (03) 151-167
  • 112 Gautschi O, Milia J, Filleron T. , et al. Targeting RET in patients with RET-rearranged lung cancers: results from the global, multicenter RET registry. J Clin Oncol 2017; 35 (13) 1403-1410
  • 113 Drilon A, Wang L, Hasanovic A. , et al. Response to Cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov 2013; 3 (06) 630-635
  • 114 Drilon A, Rekhtman N, Arcila M. , et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol 2016; 17 (12) 1653-1660
  • 115 Lee SH, Lee JK, Ahn MJ. , et al. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: a phase II clinical trial. Ann Oncol 2017; 28 (02) 292-297
  • 116 Yoh K, Seto T, Satouchi M. , et al. Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial. Lancet Respir Med 2017; 5 (01) 42-50
  • 117 Subbiah V, Velcheti V, Tuch BB. , et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol 2018; 29 (08) 1869-1876
  • 118 Lee SE, Lee B, Hong M. , et al. Comprehensive analysis of RET and ROS1 rearrangement in lung adenocarcinoma. Mod Pathol 2015; 28 (04) 468-479
  • 119 Sasaki H, Shimizu S, Tani Y. , et al. RET expression and detection of KIF5B/RET gene rearrangements in Japanese lung cancer. Cancer Med 2012; 1 (01) 68-75
  • 120 Go H, Jung YJ, Kang HW. , et al. Diagnostic method for the detection of KIF5B-RET transformation in lung adenocarcinoma. Lung Cancer 2013; 82 (01) 44-50
  • 121 Turke AB, Zejnullahu K, Wu YL. , et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 2010; 17 (01) 77-88
  • 122 Caparica R, Yen CT, Coudry R. , et al. Responses to Crizotinib can occur in high-level MET-amplified non-small cell lung cancer independent of MET Exon 14 alterations. J Thorac Oncol 2017; 12 (01) 141-144
  • 123 Awad MM, Oxnard GR, Jackman DM. , et al. MET Exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET Genomic amplification and c-Met overexpression. J Clin Oncol 2016; 34 (07) 721-730
  • 124 Liu X, Jia Y, Stoopler MB. , et al. Next-generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations. J Clin Oncol 2016; 34 (08) 794-802
  • 125 Kong-Beltran M, Seshagiri S, Zha J. , et al. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res 2006; 66 (01) 283-289
  • 126 Peschard P, Fournier TM, Lamorte L. , et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell 2001; 8 (05) 995-1004
  • 127 Mehrad M, Roy S, LaFramboise WA. , et al. KRAS mutation is predictive of outcome in patients with pulmonary sarcomatoid carcinoma. Histopathology 2018; 73 (02) 207-214
  • 128 Poirot B, Doucet L, Benhenda S, Champ J, Meignin V, Lehmann-Che J. MET Exon 14 alterations and new resistance mutations to tyrosine kinase inhibitors: risk of inadequate detection with current amplicon-based NGS panels. J Thorac Oncol 2017; 12 (10) 1582-1587
  • 129 Davies KD, Lomboy A, Lawrence CA. , et al. DNA-based versus RNA-based detection of met exon 14 skipping events in lung cancer. J Thorac Oncol 2019; 14 (04) 737-741
  • 130 Guo R, Berry LD, Aisner DL. , et al. MET IHC is a poor screen for MET amplification or MET Exon 14 mutations in lung adenocarcinomas: data from a tri-institutional cohort of the lung cancer mutation consortium. J Thorac Oncol 2019; 14 (09) 1666-1671
  • 131 Stephens P, Hunter C, Bignell G. , et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 2004; 431 (7008): 525-526
  • 132 Shigematsu H, Takahashi T, Nomura M. , et al. Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res 2005; 65 (05) 1642-1646
  • 133 Arcila ME, Chaft JE, Nafa K. , et al. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin Cancer Res 2012; 18 (18) 4910-4918
  • 134 Li C, Sun Y, Fang R. , et al. Lung adenocarcinomas with HER2-activating mutations are associated with distinct clinical features and HER2/EGFR copy number gains. J Thorac Oncol 2012; 7 (01) 85-89
  • 135 Mazières J, Peters S, Lepage B. , et al. Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J Clin Oncol 2013; 31 (16) 1997-2003
  • 136 Barlesi F, Mazieres J, Merlio JP. , et al; Biomarkers France contributors. Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet 2016; 387 (10026): 1415-1426
  • 137 Ou SI, Schrock AB, Bocharov EV. , et al. HER2 Transmembrane Domain (TMD) mutations (V659/G660) that stabilize homo- and heterodimerization are rare oncogenic drivers in lung adenocarcinoma that respond to afatinib. J Thorac Oncol 2017; 12 (03) 446-457
  • 138 Takezawa K, Pirazzoli V, Arcila ME. , et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov 2012; 2 (10) 922-933
  • 139 Li BT, Ross DS, Aisner DL. , et al. HER2 amplification and HER2 mutation are distinct molecular targets in lung cancers. J Thorac Oncol 2016; 11 (03) 414-419
  • 140 Gandhi L, Bahleda R, Tolaney SM. , et al. Phase I study of neratinib in combination with temsirolimus in patients with human epidermal growth factor receptor 2-dependent and other solid tumors. J Clin Oncol 2014; 32 (02) 68-75
  • 141 Mishra R, Hanker AB, Garrett JT. Genomic alterations of ERBB receptors in cancer: clinical implications. Oncotarget 2017; 8 (69) 114371-114392
  • 142 Kaufman JM, Amann JM, Park K. , et al. LKB1 loss induces characteristic patterns of gene expression in human tumors associated with NRF2 activation and attenuation of PI3K-AKT. J Thorac Oncol 2014; 9 (06) 794-804
  • 143 Ji H, Ramsey MR, Hayes DN. , et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 2007; 448 (7155): 807-810
  • 144 Koivunen JP, Kim J, Lee J. , et al. Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients. Br J Cancer 2008; 99 (02) 245-252
  • 145 Ding L, Getz G, Wheeler DA. , et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455 (7216): 1069-1075
  • 146 Imielinski M, Berger AH, Hammerman PS. , et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012; 150 (06) 1107-1120
  • 147 Gainor JF, Shaw AT, Sequist LV. , et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res 2016; 22 (18) 4585-4593
  • 148 Rizvi H, Sanchez-Vega F, La K. , et al. Molecular determinants of response to anti-programmed cell death (pd)-1 and anti-Programmed Death-Ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 2018; 36 (07) 633-641
  • 149 Calles A, Sholl LM, Rodig SJ. , et al. Immunohistochemical loss of LKB1 is a biomarker for more aggressive biology in KRAS-mutant lung adenocarcinoma. Clin Cancer Res 2015; 21 (12) 2851-2860
  • 150 Ghaffar H, Sahin F, Sanchez-Cepedes M. , et al. LKB1 protein expression in the evolution of glandular neoplasia of the lung. Clin Cancer Res 2003; 9 (08) 2998-3003
  • 151 Galan-Cobo A, Sitthideatphaiboon P, Qu X. , et al. LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma. Cancer Res 2019; 79 (13) 3251-3267
  • 152 Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511 (7511): 543-550
  • 153 Karlsson A, Jönsson M, Lauss M. , et al. Genome-wide DNA methylation analysis of lung carcinoma reveals one neuroendocrine and four adenocarcinoma epitypes associated with patient outcome. Clin Cancer Res 2014; 20 (23) 6127-6140
  • 154 Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489 (7417): 519-525
  • 155 Matsubara D, Kishaba Y, Ishikawa S. , et al. Lung cancer with loss of BRG1/BRM, shows epithelial mesenchymal transition phenotype and distinct histologic and genetic features. Cancer Sci 2013; 104 (02) 266-273
  • 156 Yoshimoto T, Matsubara D, Nakano T. , et al. Frequent loss of the expression of multiple subunits of the SWI/SNF complex in large cell carcinoma and pleomorphic carcinoma of the lung. Pathol Int 2015; 65 (11) 595-602
  • 157 Herpel E, Rieker RJ, Dienemann H. , et al. SMARCA4 and SMARCA2 deficiency in non-small cell lung cancer: immunohistochemical survey of 316 consecutive specimens. Ann Diagn Pathol 2017; 26: 47-51
  • 158 Agaimy A, Fuchs F, Moskalev EA, Sirbu H, Hartmann A, Haller F. SMARCA4-deficient pulmonary adenocarcinoma: clinicopathological, immunohistochemical, and molecular characteristics of a novel aggressive neoplasm with a consistent TTF1neg/CK7pos/HepPar-1pos immunophenotype. Virchows Arch 2017; 471 (05) 599-609
  • 159 Le Loarer F, Watson S, Pierron G. , et al. SMARCA4 inactivation defines a group of undifferentiated thoracic malignancies transcriptionally related to BAF-deficient sarcomas. Nat Genet 2015; 47 (10) 1200-1205
  • 160 Schaefer IM, Agaimy A, Fletcher CD, Hornick JL. Claudin-4 expression distinguishes SWI/SNF complex-deficient undifferentiated carcinomas from sarcomas. Mod Pathol 2017; 30 (04) 539-548
  • 161 Yoshida A, Kobayashi E, Kubo T. , et al. Clinicopathological and molecular characterization of SMARCA4-deficient thoracic sarcomas with comparison to potentially related entities. Mod Pathol 2017; 30 (06) 797-809
  • 162 Bell EH, Chakraborty AR, Mo X. , et al. SMARCA4/BRG1 is a novel prognostic biomarker predictive of cisplatin-based chemotherapy outcomes in resected non-small cell lung cancer. Clin Cancer Res 2016; 22 (10) 2396-2404
  • 163 Fillmore CM, Xu C, Desai PT. , et al. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature 2015; 520 (7546): 239-242
  • 164 Henon C, Blay JY, Massard C. , et al. Long lasting major response to pembrolizumab in a thoracic malignant rhabdoid-like SMARCA4-deficient tumor. Ann Oncol 2019 ; doi:10.1093/annonc/mdz160
  • 165 Garon EB, Rizvi NA, Hui R. , et al; KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372 (21) 2018-2028
  • 166 Reck M, Rodríguez-Abreu D, Robinson AG. , et al; KEYNOTE-024 Investigators. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016; 375 (19) 1823-1833
  • 167 Garon EB, Hellmann MD, Rizvi NA. , et al. Five-year overall survival for patients with advanced non–small-cell lung cancer treated with pembrolizumab: results from the phase I keynote-001 study. J Clin Oncol 2019; 37 (28) 2518-2527
  • 168 Mok TSK, Wu YL, Kudaba I. , et al; KEYNOTE-042 Investigators. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 2019; 393 (10183): 1819-1830
  • 169 Lee CK, Man J, Lord S. , et al. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: a systematic review and meta-analysis. JAMA Oncol 2018; 4 (02) 210-216
  • 170 Schoenfeld AJ, Arbour KC, Rizvi H. , et al. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Ann Oncol 2019; 30 (05) 839-844
  • 171 Rizvi NA, Hellmann MD, Snyder A. , et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015; 348 (6230): 124-128
  • 172 Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 2017; 377 (25) 2500-2501
  • 173 Le DT, Durham JN, Smith KN. , et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357 (6349): 409-413
  • 174 Carbone DP, Reck M, Paz-Ares L. , et al; CheckMate 026 Investigators. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med 2017; 376 (25) 2415-2426
  • 175 Cortes-Ciriano I, Lee S, Park WY, Kim TM, Park PJ. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun 2017; 8: 15180
  • 176 Garofalo A, Sholl L, Reardon B. , et al. The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine. Genome Med 2016; 8 (01) 79
  • 177 Büttner R, Longshore JW, López-Ríos F. , et al. Implementing TMB measurement in clinical practice: considerations on assay requirements. ESMO Open 2019; 4 (01) e000442
  • 178 Reck M, Borghaei H, O'Byrne KJ. Nivolumab plus ipilimumab in non-small-cell lung cancer. Future Oncol 2019; 15 (19) 2287-2302
  • 179 Hwang DH, Garcia EP, Ducar MD, Cibas ES, Sholl LM. Next-generation sequencing of cytologic preparations: An analysis of quality metrics. Cancer Cytopathol 2017; 125 (10) 786-794
  • 180 Schrijver WA, van der Groep P, Hoefnagel LD. , et al. Influence of decalcification procedures on immunohistochemistry and molecular pathology in breast cancer. Mod Pathol 2016; 29 (12) 1460-1470
  • 181 Chuang JC, Shrager JB, Wakelee HA, Neal JW. Concordant and discordant EGFR mutations in patients with multifocal adenocarcinomas: implications for EGFR-targeted therapy. Clin Ther 2016; 38 (07) 1567-1576
  • 182 Thakur MK, Ruterbusch JJ, Schwartz AG, Gadgeel SM, Beebe-Dimmer JL, Wozniak AJ. Risk of second lung cancer in patients with previously treated lung cancer: analysis of Surveillance, Epidemiology, and End Results (SEER) Data. J Thorac Oncol 2018; 13 (01) 46-53
  • 183 Trousse D, Barlesi F, Loundou A. , et al. Synchronous multiple primary lung cancer: an increasing clinical occurrence requiring multidisciplinary management. J Thorac Cardiovasc Surg 2007; 133 (05) 1193-1200
  • 184 Rami-Porta R, Asamura H, Travis WD, Rusch VW. Lung cancer - major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin 2017; 67 (02) 138-55
  • 185 Patel SB, Kadi W, Walts AE. , et al. Next-generation sequencing: a novel approach to distinguish multifocal primary lung adenocarcinomas from intrapulmonary metastases. J Mol Diagn 2017; 19 (06) 870-880