Eur J Pediatr Surg 2019; 29(04): 361-367
DOI: 10.1055/s-0039-1694745
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Animal Models of Hirschsprung's Disease: State of the Art in Translating Experimental Research to the Bedside

Naho Fujiwara
1   Department of Pediatric General and Urogenital Surgery, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
,
Nana Nakazawa-Tanaka
2   Department of Pediatric Surgery, Nerima Hospital, Juntendo University, Nerima-ku, Tokyo, Japan
,
Atsuyuki Yamataka
1   Department of Pediatric General and Urogenital Surgery, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
› Author Affiliations
Further Information

Publication History

26 June 2019

04 July 2019

Publication Date:
20 August 2019 (online)

Abstract

Hirschsprung's disease (HSCR) is caused by incomplete colonization of enteric neural crest-derived cell (ENCC) in the bowel, the failure of ENCCs to proliferate, differentiate, and migrate leads to an absence of enteric neurons in the distal colon, resulting in colonic motility dysfunction. Various animal models of HSCR have been important in the understanding of the anatomy and pathophysiology of the disease and in the discovery of genes involved in HSCR. Four types of HSCR animal models have been developed: teratogen-induced, surgically created, naturally occurring models, and knockout models. Mutations in several genes affect enteric nervous system (ENS) development and can have pleiotropic effects on this system. Furthermore, certain animal models are informative regarding how such molecules control the development and functional differentiation of the ENS. In this article, we summarize recent advances in this field and highlight opportunities for new discoveries.

 
  • References

  • 1 Spouge D, Baird PA. Hirschsprung disease in a large birth cohort. Teratology 1985; 32 (02) 171-177
  • 2 Badner JA, Sieber WK, Garver KL, Chakravarti A. A genetic study of Hirschsprung disease. Am J Hum Genet 1990; 46 (03) 568-580
  • 3 Butler Tjaden NE, Trainor PA. The developmental etiology and pathogenesis of Hirschsprung disease. Transl Res 2013; 162 (01) 1-15
  • 4 Nagy N, Goldstein AM. Enteric nervous system development: a crest cell's journey from neural tube to colon. Semin Cell Dev Biol 2017; 66: 94-106
  • 5 Furness JB, Callaghan BP, Rivera LR, Cho HJ. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol 2014; 817: 39-71
  • 6 Rao M, Gershon MD. The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol 2016; 13 (09) 517-528
  • 7 Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 2012; 9 (05) 286-294
  • 8 Musser MA, Michelle Southard-Smith E. Balancing on the crest - evidence for disruption of the enteric ganglia via inappropriate lineage segregation and consequences for gastrointestinal function. Dev Biol 2013; 382 (01) 356-364
  • 9 Xu Q, Heanue T, Pachnis V. Travelling within the fetal gut: simple rules for an arduous journey. BMC Biol 2014; 12: 50
  • 10 Goldstein AM, Hofstra RM, Burns AJ. Building a brain in the gut: development of the enteric nervous system. Clin Genet 2013; 83 (04) 307-316
  • 11 Garcia SB, Minto SB, Marques IS, Kannen V. Myenteric denervation of the gut with benzalkonium chloride: a review of forty years of an experimental model. Can J Gastroenterol Hepatol 2019; 2019: 3562492
  • 12 Sato A, Yamamoto M, Imamura K, Kashiki Y, Kunieda T, Sakata K. Pathophysiology of aganglionic colon and anorectum: an experimental study on aganglionosis produced by a new method in the rat. J Pediatr Surg 1978; 13 (04) 399-435
  • 13 Sakata K, Kunieda T, Furuta T, Sato A. Selective destruction of intestinal nervous elements by local application of benzalkonium solution in the rat. Experientia 1979; 35 (12) 1611-1613
  • 14 Yoneda A, Shima H, Nemeth L, Oue T, Puri P. Selective chemical ablation of the enteric plexus in mice. Pediatr Surg Int 2002; 18 (04) 234-237
  • 15 Goksu Erol AY, Gokcimen A, Ozdemir O. Growth failure, tardive dyskinesia, megacolon development, and hepatic damage in neonatal rats following exposure to trimethobenzamide in utero. J Matern Fetal Neonatal Med 2011; 24 (09) 1176-1180
  • 16 Niederreither K, Dollé P. Retinoic acid in development: towards an integrated view. Nat Rev Genet 2008; 9 (07) 541-553
  • 17 Niederreither K, Vermot J, Le Roux I, Schuhbaur B, Chambon P, Dollé P. The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development 2003; 130 (11) 2525-2534
  • 18 Fu M, Sato Y, Lyons-Warren A. , et al. Vitamin A facilitates enteric nervous system precursor migration by reducing Pten accumulation. Development 2010; 137 (04) 631-640
  • 19 Bondurand N, Southard-Smith EM. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: old and new players. Dev Biol 2016; 417 (02) 139-157
  • 20 Schill EM, Lake JI, Tusheva OA. , et al. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev Biol 2016; 409 (02) 473-488
  • 21 Lake JI, Tusheva OA, Graham BL, Heuckeroth RO. Hirschsprung-like disease is exacerbated by reduced de novo GMP synthesis. J Clin Invest 2013; 123 (11) 4875-4887
  • 22 Lake JI, Avetisyan M, Zimmermann AG, Heuckeroth RO. Neural crest requires Impdh2 for development of the enteric nervous system, great vessels, and craniofacial skeleton. Dev Biol 2016; 409 (01) 152-165
  • 23 Rothman TP, Le Douarin NM, Fontaine-Pérus JC, Gershon MD. Developmental potential of neural crest-derived cells migrating from segments of developing quail bowel back-grafted into younger chick host embryos. Development 1990; 109 (02) 411-423
  • 24 Thiery JP, Duband JL, Delouvée A. Pathways and mechanisms of avian trunk neural crest cell migration and localization. Dev Biol 1982; 93 (02) 324-343
  • 25 Meijers JH, Tibboel D, van der Kamp AW, van Haperen-Heuts IC, Molenaar JC. A model for aganglionosis in the chicken embryo. J Pediatr Surg 1989; 24 (06) 557-561
  • 26 Payette RF, Tennyson VM, Pomeranz HD, Pham TD, Rothman TP, Gershon MD. Accumulation of components of basal laminae: association with the failure of neural crest cells to colonize the presumptive aganglionic bowel of ls/ls mutant mice. Dev Biol 1988; 125 (02) 341-360
  • 27 Gershon MD, Chalazonitis A, Rothman TP. From neural crest to bowel: development of the enteric nervous system. J Neurobiol 1993; 24 (02) 199-214
  • 28 Zhou CB, Peng CH, Pang WB, Zhang D, Chen YJ. Treating congenital megacolon by transplanting GDNF and GFRα-1 double genetically modified rat bone marrow mesenchymal stem cells. Genet Mol Res 2015; 14 (03) 9441-9451
  • 29 Cheng LS, Hotta R, Graham HK, Nagy N, Goldstein AM, Belkind-Gerson J. Endoscopic delivery of enteric neural stem cells to treat Hirschsprung disease. Neurogastroenterol Motil 2015; 27 (10) 1509-1514
  • 30 Lane PW. Association of megacolon with two recessive spotting genes in the mouse. J Hered 1966; 57 (01) 29-31
  • 31 Lane PW, Liu HM. Association of megacolon with a new dominant spotting gene (Dom) in the mouse. J Hered 1984; 75 (06) 435-439
  • 32 Ikadai H, Fujiwata H, Agematsu Y. , et al. Obervation of congenital aganglionosis rat (Hirschsprung's disease rat) and its genetical analysis. Congenit Anom (Kyoto) 1979; 19: 31-36
  • 33 McCabe L, Griffin LD, Kinzer A, Chandler M, Beckwith JB, McCabe ER. Overo lethal white foal syndrome: equine model of aganglionic megacolon (Hirschsprung disease). Am J Med Genet 1990; 36 (03) 336-340
  • 34 Mortell A, Montedonico S, Puri P. Animal models in pediatric surgery. Pediatr Surg Int 2006; 22 (02) 111-128
  • 35 Qi BQ, Merei J, Farmer P. , et al. The vagus and recurrent laryngeal nerves in the rodent experimental model of esophageal atresia. J Pediatr Surg 1997; 32 (11) 1580-1586
  • 36 Hosoda K, Hammer RE, Richardson JA. , et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 1994; 79 (07) 1267-1276
  • 37 Baynash AG, Hosoda K, Giaid A. , et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 1994; 79 (07) 1277-1285
  • 38 Herbarth B, Pingault V, Bondurand N. , et al. Mutation of the Sry-related Sox10 gene in dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci U S A 1998; 95 (09) 5161-5165
  • 39 Southard-Smith EM, Kos L, Pavan WJ. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 1998; 18 (01) 60-64
  • 40 Puri P, Shinkai T. Pathogenesis of Hirschsprung's disease and its variants: recent progress. Semin Pediatr Surg 2004; 13 (01) 18-24
  • 41 Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 1994; 367 (6461): 380-383
  • 42 Tansey MG, Baloh RH, Milbrandt J, Johnson Jr EM. GFRalpha-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron 2000; 25 (03) 611-623
  • 43 Eng C. RET proto-oncogene in the development of human cancer. J Clin Oncol 1999; 17 (01) 380-393
  • 44 Robertson K, Mason I. Expression of ret in the chicken embryo suggests roles in regionalisation of the vagal neural tube and somites and in development of multiple neural crest and placodal lineages. Mech Dev 1995; 53 (03) 329-344
  • 45 Pouliot Y. Phylogenetic analysis of the cadherin superfamily. BioEssays 1992; 14 (11) 743-748
  • 46 Edery P, Attié T, Mulligan LM. , et al. A novel polymorphism in the coding sequence of the human RET proto-oncogene. Hum Genet 1994; 94 (05) 579-580
  • 47 Romeo G, Ronchetto P, Luo Y. , et al. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature 1994; 367 (6461): 377-378
  • 48 Kusafuka T, Wang Y, Puri P. Mutation analysis of the RET, the endothelin-B receptor, and the endothelin-3 genes in sporadic cases of Hirschsprung's disease. J Pediatr Surg 1997; 32 (03) 501-504
  • 49 Martucciello G, Ceccherini I, Lerone M, Jasonni V. Pathogenesis of Hirschsprung's disease. J Pediatr Surg 2000; 35 (07) 1017-1025
  • 50 Brooks AS, Oostra BA, Hofstra RM. Studying the genetics of Hirschsprung's disease: unraveling an oligogenic disorder. Clin Genet 2005; 67 (01) 6-14
  • 51 Worley DS, Pisano JM, Choi ED. , et al. Developmental regulation of GDNF response and receptor expression in the enteric nervous system. Development 2000; 127 (20) 4383-4393
  • 52 Young HM, Hearn CJ, Farlie PG, Canty AJ, Thomas PQ, Newgreen DF. GDNF is a chemoattractant for enteric neural cells. Dev Biol 2001; 229 (02) 503-516
  • 53 Pichel JG, Shen L, Sheng HZ. , et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996; 382 (6586): 73-76
  • 54 Moore MW, Klein RD, Fariñas I. , et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 1996; 382 (6586): 76-79
  • 55 Sánchez MP, Silos-Santiago I, Frisén J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 1996; 382 (6586): 70-73
  • 56 Durbec P, Marcos-Gutierrez CV, Kilkenny C. , et al. GDNF signalling through the Ret receptor tyrosine kinase. Nature 1996; 381 (6585): 789-793
  • 57 Shen L, Pichel JG, Mayeli T, Sariola H, Lu B, Westphal H. Gdnf haploinsufficiency causes Hirschsprung-like intestinal obstruction and early-onset lethality in mice. Am J Hum Genet 2002; 70 (02) 435-447
  • 58 Gianino S, Grider JR, Cresswell J, Enomoto H, Heuckeroth RO. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 2003; 130 (10) 2187-2198
  • 59 Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol 2013; 10 (01) 43-57
  • 60 Young HM. Physiology of the Gastrointestinal Tract, 5th ed. London, UK: Elsevier; 2012
  • 61 Zimmer J, Puri P. Knockout mouse models of Hirschsprung's disease. Pediatr Surg Int 2015; 31 (09) 787-794
  • 62 Roberts RR, Bornstein JC, Bergner AJ, Young HM. Disturbances of colonic motility in mouse models of Hirschsprung's disease. Am J Physiol Gastrointest Liver Physiol 2008; 294 (04) G996-G1008
  • 63 Uesaka T, Enomoto H. Neural precursor death is central to the pathogenesis of intestinal aganglionosis in Ret hypomorphic mice. J Neurosci 2010; 30 (15) 5211-5218
  • 64 Gariepy CE. Intestinal motility disorders and development of the enteric nervous system. Pediatr Res 2001; 49 (05) 605-613
  • 65 Heuckeroth RO, Enomoto H, Grider JR. , et al. Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron 1999; 22 (02) 253-263
  • 66 Rossi J, Luukko K, Poteryaev D. , et al. Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFR alpha2, a functional neurturin receptor. Neuron 1999; 22 (02) 243-252
  • 67 Heuckeroth RO, Lampe PA, Johnson EM, Milbrandt J. Neurturin and GDNF promote proliferation and survival of enteric neuron and glial progenitors in vitro. Dev Biol 1998; 200 (01) 116-129
  • 68 Yanagisawa H, Yanagisawa M, Kapur RP. , et al. Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 1998; 125 (05) 825-836
  • 69 Hofstra RM, Valdenaire O, Arch E. , et al. A loss-of-function mutation in the endothelin-converting enzyme 1 (ECE-1) associated with Hirschsprung disease, cardiac defects, and autonomic dysfunction. Am J Hum Genet 1999; 64 (01) 304-308
  • 70 Barlow A, de Graaff E, Pachnis V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 2003; 40 (05) 905-916
  • 71 Bondurand N, Natarajan D, Barlow A, Thapar N, Pachnis V. Maintenance of mammalian enteric nervous system progenitors by SOX10 and endothelin 3 signalling. Development 2006; 133 (10) 2075-2086
  • 72 Nagy N, Goldstein AM. Endothelin-3 regulates neural crest cell proliferation and differentiation in the hindgut enteric nervous system. Dev Biol 2006; 293 (01) 203-217
  • 73 Wu JJ, Chen JX, Rothman TP, Gershon MD. Inhibition of in vitro enteric neuronal development by endothelin-3: mediation by endothelin B receptors. Development 1999; 126 (06) 1161-1173
  • 74 Hearn CJ, Murphy M, Newgreen D. GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and enteric neurons in vitro. Dev Biol 1998; 197 (01) 93-105
  • 75 Kapur RP, Yost C, Palmiter RD. A transgenic model for studying development of the enteric nervous system in normal and aganglionic mice. Development 1992; 116 (01) 167-175
  • 76 Puffenberger EG, Kauffman ER, Bolk S. , et al. Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Hum Mol Genet 1994; 3 (08) 1217-1225
  • 77 Kusafuka T, Puri P. Mutations of the endothelin-B receptor and endothelin-3 genes in Hirschsprung's disease. Pediatr Surg Int 1997; 12 (01) 19-23
  • 78 Edery P, Attié T, Amiel J. , et al. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet 1996; 12 (04) 442-444
  • 79 Kusafuka T, Wang Y, Puri P. Novel mutations of the endothelin-B receptor gene in isolated patients with Hirschsprung's disease. Hum Mol Genet 1996; 5 (03) 347-349
  • 80 Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M. Sox10, a novel transcriptional modulator in glial cells. J Neurosci 1998; 18 (01) 237-250
  • 81 Kim J, Lo L, Dormand E, Anderson DJ. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 2003; 38 (01) 17-31
  • 82 Musser MA, Correa H, Southard-Smith EM. Enteric neuron imbalance and proximal dysmotility in ganglionated intestine of the Sox10Dom/+ Hirschsprung mouse model. Cell Mol Gastroenterol Hepatol 2015; 1 (01) 87-101
  • 83 Kapur RP. Early death of neural crest cells is responsible for total enteric aganglionosis in Sox10(Dom)/Sox10(Dom) mouse embryos. Pediatr Dev Pathol 1999; 2 (06) 559-569
  • 84 Pingault V, Bondurand N, Kuhlbrodt K. , et al. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet 1998; 18 (02) 171-173
  • 85 Touraine RL, Attié-Bitach T, Manceau E. , et al. Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain. Am J Hum Genet 2000; 66 (05) 1496-1503
  • 86 Inoue K, Tanabe Y, Lupski JR. Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann Neurol 1999; 46 (03) 313-318
  • 87 Corpening JC, Cantrell VA, Deal KK, Southard-Smith EM. A Histone2BCerulean BAC transgene identifies differential expression of Phox2b in migrating enteric neural crest derivatives and enteric glia. Dev Dyn 2008; 237 (04) 1119-1132
  • 88 Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 1999; 399 (6734): 366-370
  • 89 Elworthy S, Pinto JP, Pettifer A, Cancela ML, Kelsh RN. Phox2b function in the enteric nervous system is conserved in zebrafish and is sox10-dependent. Mech Dev 2005; 122 (05) 659-669
  • 90 Garcia-Barceló M, Sham MH, Lui VC, Chen BL, Ott J, Tam PK. Association study of PHOX2B as a candidate gene for Hirschsprung's disease. Gut 2003; 52 (04) 563-567
  • 91 Lang D, Chen F, Milewski R, Li J, Lu MM, Epstein JA. Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. J Clin Invest 2000; 106 (08) 963-971
  • 92 Goldstein AM, Brewer KC, Doyle AM, Nagy N, Roberts DJ. BMP signaling is necessary for neural crest cell migration and ganglion formation in the enteric nervous system. Mech Dev 2005; 122 (06) 821-833
  • 93 Faure C, Chalazonitis A, Rhéaume C. , et al. Gangliogenesis in the enteric nervous system: roles of the polysialylation of the neural cell adhesion molecule and its regulation by bone morphogenetic protein-4. Dev Dyn 2007; 236 (01) 44-59
  • 94 Yang JT, Liu CZ, Villavicencio EH, Yoon JW, Walterhouse D, Iannaccone PM. Expression of human GLI in mice results in failure to thrive, early death, and patchy Hirschsprung-like gastrointestinal dilatation. Mol Med 1997; 3 (12) 826-835
  • 95 Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 2000; 127 (12) 2763-2772
  • 96 Newgreen D, Young HM. Enteric nervous system: development and developmental disturbances--part 2. Pediatr Dev Pathol 2002; 5 (04) 329-349
  • 97 Liu JA, Lai FP, Gui HS. , et al. Identification of GLI mutations in patients with Hirschsprung disease that disrupt enteric nervous system development in mice. Gastroenterology 2015; 149 (07) 1837-1848.e5
  • 98 Takagi T, Nishizaki Y, Matsui F, Wakamatsu N, Higashi Y. De novo inbred heterozygous Zeb2/Sip1 mutant mice uniquely generated by germ-line conditional knockout exhibit craniofacial, callosal and behavioral defects associated with Mowat-Wilson syndrome. Hum Mol Genet 2015; 24 (22) 6390-6402
  • 99 Dastot-Le Moal F, Wilson M, Mowat D, Collot N, Niel F, Goossens M. ZFHX1B mutations in patients with Mowat-Wilson syndrome. Hum Mutat 2007; 28 (04) 313-321
  • 100 Van de Putte T, Francis A, Nelles L, van Grunsven LA, Huylebroeck D. Neural crest-specific removal of Zfhx1b in mouse leads to a wide range of neurocristopathies reminiscent of Mowat-Wilson syndrome. Hum Mol Genet 2007; 16 (12) 1423-1436
  • 101 Wakamatsu N, Yamada Y, Yamada K. , et al. Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet 2001; 27 (04) 369-370
  • 102 Amiel J, Espinosa-Parrilla Y, Steffann J. , et al. Large-scale deletions and SMADIP1 truncating mutations in syndromic Hirschsprung disease with involvement of midline structures. Am J Hum Genet 2001; 69 (06) 1370-1377
  • 103 Pan ZW, Li JC. Advances in molecular genetics of Hirschsprung's disease. Anat Rec (Hoboken) 2012; 295 (10) 1628-1638
  • 104 Anderson RB, Turner KN, Nikonenko AG, Hemperly J, Schachner M, Young HM. The cell adhesion molecule l1 is required for chain migration of neural crest cells in the developing mouse gut. Gastroenterology 2006; 130 (04) 1221-1232
  • 105 Breau MA, Pietri T, Eder O. , et al. Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype. Development 2006; 133 (09) 1725-1734
  • 106 Broders-Bondon F, Paul-Gilloteaux P, Carlier C, Radice GL, Dufour S. N-cadherin and β1-integrins cooperate during the development of the enteric nervous system. Dev Biol 2012; 364 (02) 178-191
  • 107 Mundell NA, Plank JL, LeGrone AW. , et al. Enteric nervous system specific deletion of Foxd3 disrupts glial cell differentiation and activates compensatory enteric progenitors. Dev Biol 2012; 363 (02) 373-387
  • 108 Teng L, Mundell NA, Frist AY, Wang Q, Labosky PA. Requirement for Foxd3 in the maintenance of neural crest progenitors. Development 2008; 135 (09) 1615-1624
  • 109 D'Autréaux F, Margolis KG, Roberts J. , et al. Expression level of Hand2 affects specification of enteric neurons and gastrointestinal function in mice. Gastroenterology 2011; 141 (02) 576-587 , 587.e1–587.e6
  • 110 Hendershot TJ, Liu H, Sarkar AA. , et al. Expression of Hand2 is sufficient for neurogenesis and cell type-specific gene expression in the enteric nervous system. Dev Dyn 2007; 236 (01) 93-105
  • 111 Lei J, Howard MJ. Targeted deletion of Hand2 in enteric neural precursor cells affects its functions in neurogenesis, neurotransmitter specification and gangliogenesis, causing functional aganglionosis. Development 2011; 138 (21) 4789-4800
  • 112 Morikawa Y, D'Autréaux F, Gershon MD, Cserjesi P. Hand2 determines the noradrenergic phenotype in the mouse sympathetic nervous system. Dev Biol 2007; 307 (01) 114-126
  • 113 Blaugrund E, Pham TD, Tennyson VM. , et al. Distinct subpopulations of enteric neuronal progenitors defined by time of development, sympathoadrenal lineage markers and Mash-1-dependence. Development 1996; 122 (01) 309-320
  • 114 Bates MD, Dunagan DT, Welch LC, Kaul A, Harvey RP. The Hlx homeobox transcription factor is required early in enteric nervous system development. BMC Dev Biol 2006; 6: 33
  • 115 Qiu M, Bulfone A, Martinez S. , et al. Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain. Genes Dev 1995; 9 (20) 2523-2538
  • 116 Fattahi F, Steinbeck JA, Kriks S. , et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 2016; 531 (7592): 105-109