Synthesis 2020; 52(06): 893-900
DOI: 10.1055/s-0039-1690765
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed/Copper-Mediated Desulfurization and Aryl­­ation of Quinoline-2-(1H)-thione for Rapid Access to Quinoline Derivatives

Hai-Long Lu
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China
b   Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, P. R. of China   Email: quanzhengjun@hotmail.com
,
Fu-Hu Guo
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China
b   Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, P. R. of China   Email: quanzhengjun@hotmail.com
,
Tong-Lin Wang
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China
b   Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, P. R. of China   Email: quanzhengjun@hotmail.com
,
Xi-Cun Wang
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China
b   Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, P. R. of China   Email: quanzhengjun@hotmail.com
,
Zheng-Jun Quan
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China
b   Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, P. R. of China   Email: quanzhengjun@hotmail.com
› Author Affiliations
We are thankful for the financial support from the National Nature Science Foundation of China (No. 21562036), and the Key Talent Projects in Gansu Province (2018A-004).
Further Information

Publication History

Received: 21 September 2019

Accepted after revision: 26 November 2019

Publication Date:
09 December 2019 (online)


Abstract

An efficient method for carbon–carbon bond formation is described. The process employs the palladium-catalyzed and copper-mediated cross-coupling of quinoline-2-(1H)-thiones with arylboronic acids or alkynes through C–S bond cleavage without an inert atmosphere. The method provides rapid and general access to a diverse range of 2-substituted quinolines in a single step from a wide range of quinoline-2-(1H)-thiones and arylboronic acids or alkynes.

Supporting Information

 
  • References

    • 1a Shang XF, Morris-Natschke SL, Liu YQ, Guo X, Xu XS, Goto M, Li JC, Yang GZ, Lee KH. Med. Res. Rev. 2018; 38: 775
    • 1b Puri SC, Verma V, Amna T, Qazi GN, Spiteller M. J. Nat. Prod. 2005; 68: 1717
  • 2 Tabassum S, Kumara TH. S, Jasinski JP, Millikan SP, Yathirajan HS, Ganapathy PS. S, Sowmya HB. V, More SS, Nagendrappa G, Kaur M, Jose G. J. Mol. Struct. 2014; 1070: 10
  • 3 Kumar S, Kaushik D, Bawa S, Khan SA. Chem. Biol. Drug Des. 2012; 79: 104
  • 4 El-Feky SA, Thabet HK, Ubeid MT. J. Fluorine Chem. 2014; 161: 87
  • 5 Scott DA, Dakin LA, Daly K, Del Valle DJ, Diebold RB, Drew L, Ezhuthachan J, Gero TW, Ogoe CA, Omer CA, Redmond SP, Repik G, Thakur K, Ye Q, Zheng X. Bioorg. Med. Chem. Lett. 2013; 23: 4591
    • 6a Li SM, Huang J, Chen GJ, Han FS. Chem. Commun. 2011; 47: 12840
    • 6b Gothard CM, Soh S, Gothard NA, Kowalczyk B, Wei Y, Baytekin B, Grzybowski BA. Angew. Chem. Int. Ed. 2012; 51: 7922
    • 6c Mitamura T, Ogawa A. J. Org. Chem. 2011; 76: 1163
    • 6d Yaragorla S, Pareek A, Dada R, Saini PL. Eur. J. Org. Chem. 2017; 4600
    • 6e Steib AK, Kuzmina OM, Fernandez S, Flubacher D, Knochel P. J. Am. Chem. Soc. 2013; 135: 15346
    • 6f Ghorai J, Reddy AC. S, Anbarasan P. Chem. Asian J. 2018; 13: 2499
    • 6g Zhang X, Xu X, Yu L, Zhao Q. Tetrahedron Lett. 2014; 55: 2280
    • 6h Yamaguchi K, Noda T, Tomizawa T, Kanai E, Hioki H. Eur. J. Org. Chem. 2015; 4990
    • 6i Xu X, Liu W, Wang Z, Feng Y, Yan Y, Zhang X. Tetrahedron Lett. 2016; 57: 226
    • 6j Chen L.-C, Wang H.-M, Hou R.-S, Du H.-D, Kang I.-J. Heterocycles 2011; 83: 331
    • 6k Tanwar B, Kumar D, Kumar A, Ansari MI, Qadri MM, Vaja MD, Singh M, Chakraborti AK. New J. Chem. 2015; 39: 9824
    • 6l Park J, Park JS, Park YG, Lee JY, Kang JW, Liu J, Dai L, Jin S.-H. Org. Electron. 2013; 14: 2114
    • 6m Das S, Maiti D, De Sarkar S. J. Org. Chem. 2018; 83: 2309
    • 6n Jiang K.-M, Kang J.-A, Jin Y, Lin J. Org. Chem. Front. 2018; 5: 434
    • 6o Sapkota K, Han SS. New J. Chem. 2017; 41: 5395
    • 6p Ryabukhin SV, Naumchik VS, Plaskon AS, Grygorenko OO, Tolmachev AA. J. Org. Chem. 2011; 76: 5774
    • 6q Das K, Mondal A, Srimani D. Chem. Commun. 2018; 54: 10582
    • 6r Xiao F, Chen Y, Liu Y, Wang J. Tetrahedron 2008; 64: 2755
    • 6s Wang Z, Zhang X, Liu W, Sun R, Xu X, Yan Y. Synlett 2016; 27: 1563
    • 6t Cho H, Török F, Török B. Green Chem. 2014; 16: 3623
    • 8a Ben Halima T, Zhang W, Yalaoui I, Hong X, Yang Y.-F, Houk KN, Newman SG. J. Am. Chem. Soc. 2017; 139: 1311
    • 8b Weires NA, Baker EL, Garg NK. Nat. Chem. 2016; 8: 75
    • 8c Malapit CA, Bour JR, Brigham CE, Sanford MS. Nature 2018; 563: 100
  • 9 Cui M, Wu H, Jian J, Wang H, Liu C, Daniel S, Zeng Z. Chem. Commun. 2016; 52: 12076
    • 10a Zapf A. Angew. Chem. Int. Ed. 2003; 42: 5394
    • 10b Kang FA, Sui Z, Murray WV. J. Am. Chem. Soc. 2008; 130: 11300
    • 10c Liu C, Qin ZX, Ji CL, Hong X, Szostak M. Chem. Sci. 2019; 10: 5736
    • 11a Maltsev OV, Rausch R, Quan Z.-J, Hintermann L. Eur. J. Org. Chem. 2014; 7426
    • 11b Kim H, Phan NH. T, Shin H, Lee H.-S, Sohn J.-H. Tetrahedron 2017; 73: 6604
    • 11c Ma Y, Cammarata J, Cornella J. J. Am. Chem. Soc. 2019; 141: 1918
    • 11d Zapf A. Angew. Chem. 2003; 115: 5552
  • 12 Li BJ, Yu DG, Sun CL, Shi ZJ. Chem. Eur. J. 2011; 17: 1728
  • 13 Liebeskind LS, Srogl J. J. Am. Chem. Soc. 2000; 122: 11260
  • 14 Lengar A, Kappe CO. Org. Lett. 2004; 6: 771
    • 15a Cheng H.-G, Chen H, Liu Y, Zhou Q. Asian J. Org. Chem. 2018; 7: 490
    • 15b Mehta VP, Sharma A, Eycken EV. B. Org. Lett. 2008; 10: 1147
    • 15c Maltsev OV, Pöthig A, Hintermann L. Org. Lett. 2014; 16: 1282
  • 16 Wang TL, Liu XJ, Huo CD, Wang XC, Quan ZJ. Chem. Commun. 2018; 54: 499
    • 17a Quan Z.-J, Hu W.-H, Jia X.-D, Zhang Z, Da Y.-X, Wang X.-C. Adv. Synth. Catal. 2012; 354: 2939
    • 17b Quan Z.-J, Lv Y, Jing F.-Q, Jia X.-D, Huo C.-D, Wang X.-C. Adv. Synth. Catal. 2014; 356: 325
    • 17c Yan ZF, Quan ZJ, Da Y X, Zhang Z, Wang XC. Chem. Commun. 2014; 50: 13555
    • 17d Du B.-X, Quan Z.-J, Da Y.-X, Zhang Z, Wang X.-C. Adv. Synth. Catal. 2015; 357: 1270
    • 17e Yang Q, Quan Z, Du B, Wu S, Li P, Sun Y, Lei Z, Wang X. Catal. Sci. Technol. 2015; 5: 4522
    • 17f Wang X.-C, Quan Z.-J, Liu M.-X, Gong H.-P. Synlett 2017; 29: 330