Synthesis 2020; 52(02): 253-262
DOI: 10.1055/s-0039-1690709
paper
© Georg Thieme Verlag Stuttgart · New York

An Alternative Metal-Free Aerobic Oxidative Cross-Dehydrogenative Coupling of Sulfonyl Hydrazides with Secondary Phosphine Oxides

Teng Liu
Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, Qujing Normal University, Qujing, 655011, P. R. of China   Email: 15288404381@163.com   Email: liut_yqzhin@mail.qjnu.edu.cn
,
Yanqiong Zhang
,
Rong Yu
,
Jianjun Liu
,
Feixiang Cheng
› Author Affiliations
This work was supported by the Program for the Application of Fundamental Research of Yunnan Province (Grant No. 2018FB019), the Opening Foundation of the Key Laboratory of Natural Resources and Pharmaceutical Chemistry, Ministry of Education, Yunnan University, and the National Natural Science Foundation of China (Grant No. 21961030).
Further Information

Publication History

Received: 06 August 2019

Accepted after revision: 20 September 2019

Publication Date:
17 October 2019 (online)


Abstract

An alternative metal-free, efficient and practical approach for the preparation of phosphinothioates is established via the aerobic oxidative cross-dehydrogenative coupling (CDC) of sulfonyl hydrazides with secondary phosphine oxides catalyzed by tetrabutylammonium iodide (TBAI) in the presence of atmospheric oxygen. The strategy provides an array of diverse phosphinothioates in good to excellent yields. Furthermore, two representative bioactive molecules are synthesized on up to gram scale by utilizing this method.

Supporting Information

 
  • References

    • 1a Melnikov NN. Chemistry of Pesticides 1971
    • 1b Fest C, Schmidt K.-J. The Chemistry of Organophosphorus Pesticides . Springer-Verlag; Berlin: 1982
    • 1c Uhlman E, Peyman A. Chem. Rev. 1990; 90: 543
    • 1d Gallo MA, Lawryk NJ. Organic Phosphorus Pesticides. The Handbook of Pesticide Toxicology. Academic Press; San Diego: 1991
    • 1e Stein CA, Cheng YC. Science 1993; 261: 1004
    • 1f Vollmer SH, Walner MB, Tarbell KV, Colman RF. J. Biol. Chem. 1994; 269: 8082
    • 1g Crooke ST, Bennett CF. Annu. Rev. Pharmacol. Toxicol. 1996; 36: 107
    • 1h Elzagheid MI, Mattila K, Oivanen M, Jones BC. N. M, Cosstick R, Lonnberg H. Eur. J. Org. Chem. 2000; 1987
    • 1i Quin LD. A Guide to Organophosphorus Chemistry . John Wiley & Sons; New York: 2000
    • 1j Murphy PJ. Organophosphorus Reagents . Oxford University Press; Oxford: 2004
    • 1k Reddy EP, Reddy MV. R, Bell SC. WO2005089269A2, 2005
    • 1l Carta P, Puljic N, Robert C, Dhimane A.-L, Fensterbank L, Lacôte E, Malacria M. Org. Lett. 2007; 9: 1061
    • 1m Pandey VK, Dwivedi A, Pandey OP, Sengupta SK. J. Agric. Food Chem. 2008; 56: 10779
    • 1n Li N.-S, Frederiksen JK, Piccirilli JA. Acc. Chem. Res. 2011; 44: 1257
    • 1o Tang C, Li Y, Chen B, Yang H, Jin G. Pesticide Chemistry . Nankai University; Tianjin (P. R. of China): 2011
    • 1p Yin Z, Zhu X, Qian H, Li Z, Jing L, Wang X. Organic Phosphorous Compounds . Chemical Industry; Beijing: 2011
    • 1q Hoshi N, Kashiwabara T, Tanaka M. Tetrahedron Lett. 2012; 53: 2078
    • 1r Leisvuori A, Ahmed Z, Ora M, Beigelman L, Blatt L, Lönnberg H. Helv. Chim. Acta 2012; 95: 1512
    • 1s Noro M, Fujita S, Wada T. Org. Lett. 2013; 15: 5948
    • 1t Kumar TS, Yang T, Mishra S, Cronin C, Chakraborty S, Shen J.-B, Liang BT, Jacobson KA. J. Med. Chem. 2013; 56: 902
    • 1u Loranger MW, Beaton SA, Lines KL, Jakeman DL. Carbohydr. Res. 2013; 379: 43
    • 1v Xie R, Zhao Q, Zhang T, Fang J, Mei X, Ning J, Tang Y. Bioorg. Med. Chem. 2013; 21: 278
    • 1w Zhang A, Sun J, Lin C, Hu X, Liu W. J. Agric. Food Chem. 2014; 62: 1477
    • 1x Huang P.-J, Wang F, Liu J. Anal. Chem. 2015; 87: 6890
    • 1y Sun J.-G, Weng W.-Z, Li P, Zhang B. Green Chem. 2017; 19: 1128
    • 1z Huang H, Ash J, Kang JY. Org. Biomol. Chem. 2018; 16: 4236
  • 2 Dabkowski W, Michalski J, Skrzypczyński Z. Chem. Commun. 1982; 1260
    • 3a Kaboudin B. Tetrahedron Lett. 2002; 43: 8713
    • 3b Xu J, Zhang L, Li X, Gao Y, Tang G, Zhao Y. Org. Lett. 2016; 18: 1266
    • 4a Harvey RG, Jacobson HI, Jensen EV. J. Am. Chem. Soc. 1963; 85: 1623
    • 4b Au-Yeung T.-L, Chan K.-Y, Chan W.-K, Haynes RK, Williams ID, Yeung LL. Tetrahedron Lett. 2001; 42: 453
    • 4c Renard P.-Y, Schwebel H, Vayron P, Josien L, Valleix A, Mioskowski C. Chem. Eur. J. 2002; 8: 2910
    • 4d Xu Q, Liang C.-G, Huang X. Synth. Commun. 2003; 33: 2777
    • 4e Timperley CM, Saunders SA, Szpalek J, Waters MJ. J. Fluorine Chem. 2003; 119: 161
    • 4f Arisawa M, Ono T, Yamaguchi M. Tetrahedron Lett. 2005; 46: 5669
    • 4g Carta P, Puljic N, Robert C, Dhimane AL, Fensterbank L, Lacote E, Malacria M. Org. Lett. 2007; 9: 1061
    • 4h Carta P, Puljic N, Robert C, Dhimane AL, Ollivier C, Fensterbank L, Lacote E, Malacria M. Tetrahedron 2008; 64: 11865
    • 4i Gao Y.-X, Tang G, Cao Y, Zhao Y.-F. Synthesis 2009; 1081
    • 4j Ouyang Y.-J, Li Y.-Y, Li N.-B, Xu X.-H. Chin. Chem. Lett. 2013; 24: 1103
    • 4k Bai J, Cui X.-L, Wang H, Wu Y.-J. Chem. Commun. 2014; 50: 8860
    • 4l Liu Y.-C, Lee C.-F. Green Chem. 2014; 16: 357
    • 4m Bi X, Li J, Meng F, Wang H, Xiao J. Tetrahedron 2016; 72: 706
    • 4n Wang W.-M, Liu L.-J, Yao L, Meng F.-J, Sun Y.-M, Zhao C.-Q, Xu Q, Han L.-B. J. Org. Chem. 2016; 81: 6843
    • 4o Moon Y, Moon Y, Choi H, Hong S. Green Chem. 2017; 19: 1005
    • 5a Atherton FR, Todd AR. J. Chem. Soc. 1947; 674
    • 5b Renard P.-Y, Schwebel H, Vayron P, Josien L, Valleix A, Mioskowski C. Chem. Eur. J. 2002; 8: 2910
    • 5c Gao Y.-X, Tang G, Cao Y, Zhao Y.-F. Synthesis 2009; 1081
    • 5d Wang G, Shen R, Xu Q, Goto M, Zhao Y, Han L.-B. J. Org. Chem. 2010; 75: 3890
    • 5e Xiong B, Zhou Y, Zhao C, Goto M, Yin S.-F, Han L.-B. Tetrahedron 2013; 69, 9373
    • 5f Ouyang Y.-J, Li Y.-Y, Li N.-B, Xu X.-H. Chin. Chem. Lett. 2013; 24: 1103
    • 5g Mitra S, Mukherjee S, Sen SK, Hajra A. Bioorg. Med. Chem. Lett. 2014; 24: 2198
    • 5h Bai J, Cui X, Wang H, Wu Y. Chem. Commun. 2014; 50: 8860
    • 5i Li S, Chen T, Saga Y, Han L.-B. RSC Adv. 2015; 5: 71544
    • 5j He W, Hou X, Li X, Song L, Yu Q, Wang Z. Tetrahedron 2017; 73: 3133
    • 5k Song S, Zhang Y, Yeerlan A, Zhu B, Liu J, Jiao N. Angew. Chem. Int. Ed. 2017; 43: 3400
    • 5l Huang H, Ash J, Kang JY. Org. Biomol. Chem. 2018; 16: 4236
    • 6a He W, Wang Z.-M, Li X.-J, Yu Q, Wang Z.-W. Tetrahedron 2016; 72: 7594
    • 6b Zhang X, Wang D, An D, Han B, Song X, Li L, Zhang G, Wang L. J. Org. Chem. 2018; 83: 1532
    • 7a Wang J, Huang X, Ni Z, Wang S, Wu J, Pan Y. Green Chem. 2015; 17: 314
    • 7b Wang J, Huang X, Ni Z, Wang S, Pan Y, Wu J. Tetrahedron 2015; 71: 7853
    • 7c Kaboudin B, Abedi Y, Kato J.-y, Yokomatsu T. Synthesis 2013; 45: 2323
    • 7d Liu N, Mao L.-L, Yang B, Yang S.-D. Chem. Commun. 2014; 50: 10879
  • 8 Zhu Y, Chen T, Li S, Shimada S, Han L.-B. J. Am. Chem. Soc. 2016; 138: 5825
  • 9 Sun J.-G, Yang H, Li P, Zhang B. Org. Lett. 2016; 18: 5114
    • 10a Yang Y, Tang L, Zhang S, Guo X, Zha Z, Wang Z. Green Chem. 2014; 16: 4106
    • 10b Yang F.-L, Ma X.-T, Tian S.-K. Chem. Eur. J. 2012; 18: 1582
    • 10c Liu T, Liu J, Xia S, Meng J, Shen X, Zhu X, Chen W, Sun C, Cheng F. ACS Omega 2018; 3: 1409
  • 11 Kumaraswamy G, Raju R. Adv. Synth. Catal. 2014; 356: 2591
    • 12a Liu T, Zhu H.-Y, Luo D.-Y, Yan S.-J, Lin J. Molecules 2016; 21: 638
    • 12b Liu T, Liu J, Shen X, Xu J, Nian B, He N, Zeng S, Cheng F. Synthesis 2019; 51: 1365
    • 12c Liu T, Li Y, Shen X, Liu J, Cheng F, Lin J. Green Chem. 2019; 21: 3536
  • 13 CCDC 1941646 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 14a Yang F.-L, Tian S.-K. Angew. Chem. Int. Ed. 2013; 52: 4929
    • 14b Dhineshkumar J, Prabhu KR. Org. Lett. 2013; 15: 6062