Synthesis 2019; 51(22): 4170-4182
DOI: 10.1055/s-0039-1690618
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of Diverse 5-Thio- or 5-Selenotriazoles: One-Pot Multicomponent Reaction from Elemental Sulfur or Selenium

Lin-Lin Zhang
,
Ya-Ting Li
,
Ting Gao
,
Sha-Sha Guo
,
Bei Yang
,
Zi-Hui Meng
,
Qi-Pu Dai
,
Zhi-Bin Xu
,
Qin-Pei Wu
Further Information

Publication History

Received: 17 May 2019

Accepted after revision: 06 August 2019

Publication Date:
21 August 2019 (online)


Abstract

A sequential multistep reaction toward 5-thio- or 5-selenotriazoles has been established by generation of both copper(I) triazolides and sulfenylating or selenylating agents in situ, starting from elemental sulfur or selenium. This reaction features mild conditions, readily available and broad-scope substrates, good functional group compatibility, high efficiency and regioselectivity, easy operation, and ligand-free CuI.

Supporting Information

 
  • References

  • 1 Massarotti A, Aprile S, Mercalli V, Del Grosso E, Grosa G, Sorba G, Tron GC. ChemMedChem 2014; 9: 2497
    • 2a Offenloch JT, Mutlu H, Barner-Kowollik C. Macromolecules 2018; 51: 2682
    • 2b Huang D, Liu Y, Qin A, Tang BZ. Polym. Chem. 2018; 9: 2853
    • 2c Martens S, Holloway JO, Du Prez FE. Macromol. Rapid Commun. 2017; 38 (24) 1700469
    • 2d Huo JP, Hu HW, Zhang M, Hu XH, Chen M, Chen DC, Liu JW, Xiao GF, Wang Y, Wen ZL. RSC Adv. 2017; 7: 2281
    • 3a Golas PL, Matyjaszewski K. Chem. Soc. Rev. 2010; 39: 1338
    • 3b Qin A, Lam JW. Y, Tang BZ. Chem. Soc. Rev. 2010; 39: 2522
    • 4a Thasnim P, Bahulayan D. New J. Chem. 2017; 41: 13483
    • 4b Cui F.-h, Chen J, Mo Z.-y, Su S.-x, Chen Y.-y, Ma X.-l, Tang H.-t, Wang H.-s, Pan Y.-m, Xu Y.-l. Org. Lett. 2018; 20: 925
    • 5a da Silva F. deC, de Souza MC. B. V, Frugulhetti II. P, Castro HC, Souza SL. de O, de Souza TM. L, Rodrigues DQ, Souza AM. T, Abreu PA, Passamani F, Rodrigues CR, Ferreira VF. Eur. J. Med. Chem. 2009; 44: 373
    • 5b Loddo R, Novelli F, Sparatore A, Tasso B, Tonelli M, Boido V, Sparatore F, Collu G, Delogu I, Giliberti G, La Colla P. Bioorg. Med. Chem. 2015; 23: 7024
    • 6a Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
    • 6b Evano G, Coste A, Jouvin K. Angew. Chem. Int. Ed. 2010; 49: 2840
    • 6c Wu Y, Jiang Z, Li Z, Gu J, You Q, Zhang X. J. Med. Chem. 2018; 61: 5332
    • 6d Jordao AK, Ferreira VF, Lima ES, de Souza MC. B. V, Carlos EC. L, Castro HC, Geraldo RB, Rodrigues CR, Almeida MC. B, Cunha AC. Bioorg. Med. Chem. 2009; 17: 3713
  • 7 Lv M, Ma J, Li Q, Xu H. Bioorg. Med. Chem. Lett. 2018; 28: 181
  • 8 Briguglio I, Piras S, Corona P, Gavini E, Nieddu M, Boatto G, Carta A. Eur. J. Med. Chem. 2015; 97: 612
  • 9 Tam A, Arnold U, Soellner MB, Raines RT. J. Am. Chem. Soc. 2007; 129: 12670
  • 10 Scattergood PA, Sinopoli A, Elliott PI. P. Coord. Chem. Rev. 2017; 350: 136
  • 11 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
  • 12 Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 13a Liu Y, Nie G, Zhou Z, Jia L, Chen Y. J. Org. Chem. 2017; 82: 9198
    • 13b Zhang L, Chen XG, Xue P, Sun HH. Y, Williams ID, Sharpless KB, Fokin VV, Jia GC. J. Am. Chem. Soc. 2005; 127: 15998
    • 14a Rasmussen LK, Boren BC, Fokin VV. Org. Lett. 2007; 9: 5337
    • 14b Boren BC, Narayan S, Rasmussen LK, Zhang L, Zhao H, Lin Z, Jia G, Fokin VV. J. Am. Chem. Soc. 2008; 130: 8923
    • 14c Johansson JR, Beke-Somfai T, Stalsmeden AS, Kann N. Chem. Rev. 2016; 116: 14726
    • 15a Ding S, Jia G, Sun J. Angew. Chem. Int. Ed. 2014; 53: 1877
    • 15b Luo Q, Jia G, Sun J, Lin Z. J. Org. Chem. 2014; 79: 11970
    • 16a Hein JE, Tripp JC, Krasnova LB, Sharpless KB, Fokin VV. Angew. Chem. Int. Ed. 2009; 48: 8018
    • 16b Worrell BT, Hein JE, Fokin VV. Angew. Chem. Int. Ed. 2012; 51: 11791
    • 17a Nolte C, Mayer P, Straub BF. Angew. Chem. Int. Ed. 2007; 46: 2101
    • 17b Jin L, Tolentino DR, Melaimi M, Bertrand G. Sci. Adv. 2015; 1: e1500304
    • 17c Worrell BT, Malik JA, Fokin VV. Science 2013; 340: 457
    • 18a Wang W, Lin Y, Ma Y, Tung C.-H, Xu Z. Org. Lett. 2018; 20: 2956
    • 18b Wang W, Peng X, Wei F, Tung C.-H, Xu Z. Angew. Chem. Int. Ed. 2016; 55: 649
    • 19a Wen Y.-n, Zhang Z.-f, Liu N.-n, Andrei G, Snoeck R, Xiang Y.-h, Schols D, Chen X, Zhang Z.-y, Zhang Q.-s, Wu Q.-p. Med. Chem. 2017; 13: 453 DOI: 10.2174/1573406413666170307165236
    • 19b Liao Y, Lu Q, Chen G, Yu Y, Li C, Huang X. ACS Catal. 2017; 7: 7529
    • 19c Zhou Y, Lecourt T, Micouin L. Angew. Chem. Int. Ed. 2010; 49: 2607
    • 19d Wei F, Li H, Song C, Ma Y, Zhou L, Tung C.-H, Xu Z. Org. Lett. 2015; 17: 2860
    • 19e Wang W, Wei F, Ma Y, Tung C.-H, Xu Z. Org. Lett. 2016; 18: 4158
  • 20 Zhang J.-R, Zhan L.-Z, Wei L, Ning Y.-Y, Zhong X.-L, Lai J.-X, Xu L, Tang R.-Y. Adv. Synth. Catal. 2018; 360: 533
  • 22 Zhao W, Li Z, Sun J. J. Am. Chem. Soc. 2013; 135: 4680
    • 23a Shen C, Zhang P, Sun Q, Bai S, Hor TS. A, Liu X. Chem. Soc. Rev. 2015; 44: 291
    • 23b Ghaderi A. Tetrahedron 2016; 72: 4758
    • 24a Rostami A, Rostami A, Ghaderib A, Zolfigolc MA. RSC Adv. 2015; 5: 37060
    • 24b Amiri K, Rostami A, Rostami A. New J. Chem. 2016; 40: 7522
    • 24c Chen H.-Y, Peng W.-T, Lee Y.-H, Chang Y.-L, Chen Y.-J, Lai Y.-C, Jheng N.-Y, Chen H.-Y. Organometallics 2013; 32: 5514
    • 25a Brassard CJ, Zhang XG, Brewer CR, Liu PY, Clark RJ, Zhu L. J. Org. Chem. 2016; 81: 12091
    • 25b Barsoum DN, Okashah N, Zhang X, Zhu L. J. Org. Chem. 2015; 80: 9542
  • 26 Recorded at Analysis & Testing Center, Beijing Institute of Technology.
  • 27 Chen C, Xie Y, Chu L, Wang R, Zhang X, Qing F. Angew. Chem. Int. Ed. 2012; 51: 2492