Synthesis 2019; 51(18): 3451-3461
DOI: 10.1055/s-0039-1690099
paper
© Georg Thieme Verlag Stuttgart · New York

N-Heterocyclic Carbene Catalyzed Stereoselective Synthesis of 2-Nitro-thiogalactosides

Yu-Long Hu ‡
,
Bo-Bo Gou ‡
,
Jiao Wang
,
Ming Zhao
,
Jia-Lin Liu
,
Jie Chen
,
Ling Zhou
We thank the National Natural Science Foundation of China (NSFC-21672170), the Natural Science Foundation of Shaanxi Province (2018JC-020, 2018JM2029), the China Postdoctoral Science Foundation (2018M643705), the Key Science and Technology Innovation Team of Shanxi Province (2017KCT-37), and the ‘Top-rated Discipline’ Construction Scheme of Shaanxi Higher Education for financial support.
Further Information

Publication History

Received: 18 February 2019

Accepted after revision: 21 May 2019

Publication Date:
26 June 2019 (online)


These authors contributed equally to this work.

Abstract

A highly selective NHC-catalyzed Michael addition of alkanethiols or thiophenol to 2-nitro-d-galactal compounds for the synthesis of 2-nitro-thiogalactoside derivatives has been developed for the first time. A wide variety of 1,2-cis-2-nitro-thiogalactosides can be prepared in good to excellent yields and high to excellent α-selectivities.

Supporting Information

 
  • References

    • 1a Dwek RA. Chem. Rev. 1996; 96: 683
    • 1b Herzner H, Reipen T, Schultz M, Kunz H. Chem. Rev. 2000; 100: 4495
    • 1c Bertozzi CR, Kiessling LL. Science 2001; 291: 2357
    • 1d Spiro RG. Glycobiology 2002; 12: 43R
    • 1e Rai R, McAlexander I, Chang CW. T. Org. Prep. Proced. Int. 2005; 37: 337
    • 1f Magnet S, Blanchard JS. Chem. Rev. 2005; 105: 477
    • 1g Seeberger PH, Werz DB. Nature 2007; 446: 1046
    • 1h Galan MC, Benito-Alifonso D, Watt GM. Org. Biomol. Chem. 2011; 9: 3598
    • 1i Galan MC, Dumy P, Renaudet O. Chem. Soc. Rev. 2013; 42: 4599
    • 2a Kinjo Y, Wu D, Kim G, Xing G, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M. Nature 2005; 434: 520
    • 2b Hollingsworth MA, Swanson BJ. Cancer 2004; 4: 45
    • 2c Garg HG, von dem Bruch K, Kunz H. Adv. Carbohydr. Chem. Biochem. 1994; 50: 277
    • 2d Glycoproteins . Montreuil J, Schachter H, Vliegenthart JF. G. Elsevier; Amsterdam: 1995
    • 2e Hainrichson M, Nudelman I, Baasov T. Org. Biomol. Chem. 2008; 6: 227
    • 2f Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. Glycobiology 2012; 22: 736
    • 3a Horton D, Huston DH. Adv. Carbohydr. Chem. 1963; 18: 123
    • 3b Defaye J, Gelas J. In Studies in Natural Products Chemistry, Vol. 8. Atta-ur-Rahman Elsevier; Oxford: 1991: 315
    • 3c Driguez H. Top. Curr. Chem. 1997; 187: 85
    • 3d Driguez H. ChemBioChem 2001; 2: 311
    • 3e Fairweather JK, Driguez H. In Carbohydrates in Chemistry and Biology, Vol. 1. Ernst B, Hart GW, Sinaÿ P. Wiley-VCH; Toronto: 2000: 531
    • 4a Seeberger PH, Haase W.-C. Chem. Rev. 2000; 100: 4349
    • 4b Davis BG. Chem. Rev. 2002; 102: 579
    • 4c Codée JD. C, Litjens RE. J. N, van den Bos LJ, Overkleeft HS, van der Marel GA. Chem. Soc. Rev. 2005; 34: 769
    • 4d Pachamuthu K, Schmidt RR. Chem. Rev. 2006; 106: 160
    • 5a Wilson JC, Kiefel MJ, Angus DI, von Itzstein M. Org. Lett. 1999; 1: 443
    • 5b Witczak ZJ, Culhane JM. Microbiol. Biotechnol. 2005; 69: 237
    • 6a Floyd N, Vijayakrishnan B, Koeppe JR, Davis BG. Angew. Chem. Int. Ed. 2009; 48: 7798
    • 6b Noel A, Delpech B, Crich D. Org. Lett. 2012; 14: 4138
    • 6c Zeng X, Smith R, Zhu X. J. Org. Chem. 2013; 78: 4165
    • 6d Zhang L, McCarthy C, Zhu X. Carbohydr. Res. 2017; 448: 43
    • 6e Kuan T.-C, Wu H.-R, Adak AK, Li B.-Y, Liang C.-F, Hung J.-T, Chiou S.-P, Yu AL, Hwu JR, Lin CC. Chem. Eur. J. 2017; 23: 6876
    • 7a Monsigny ML. P, Vaculik DD. M. Carbohydr. Res. 1977; 59: 589
    • 7b Knapp S, Myers DS. J. Org. Chem. 2001; 66: 3636
    • 7c Knapp S, Myers DS. J. Org. Chem. 2002; 67: 2995
    • 7d Knapp S, Gonzalez S, Myers DS, Eckman LL, Bewley CA. Org. Lett. 2002; 4: 4337
    • 7e Zhu X, Schmidt RR. Chem. Eur. J. 2004; 10: 875
    • 7f Pachamuthu K, Zhu X, Schmidt RR. J. Org. Chem. 2005; 70: 3720
    • 7g Thayer DA, Yu HN, Galan MC, Wong C.-H. Angew. Chem. Int. Ed. 2005; 44: 4596
    • 8a Fujihira T, Takido T, Seno M. J. Mol. Catal. A: Chem. 1999; 137: 65
    • 8b Nitz M, Bundle DR. J. Org. Chem. 2001; 66: 8411
    • 8c Eisele T, Toepfer A, Kretzschmar G, Schmidt RR. Tetrahedron Lett. 1996; 37: 1389
    • 9a Lonn H. Carbohydr. Res. 1985; 139: 105
    • 9b Yan L, Kahne D. J. Am. Chem. Soc. 1996; 118: 9239
    • 9c Fuchss T, Schmidt RR. Synthesis 1998; 753
    • 9d Auzanneau F.-I, Bennis K, Fanton E, Promé D, Defaye J, Gelas J. J. Chem. Soc., Perkin Trans. 1 1998; 3629
    • 9e Xu Y, Zhang Q, Xiao Y, Wu P, Chen W, Song Z, Xiao X, Meng L, Zeng J, Wan Q. Tetrahedron Lett. 2017; 58: 2381
    • 9f Kumar A, Schmidt RR. Eur. J. Org. Chem. 2012; 2715
    • 9g De Leon CA, Lang G, Saavedra MI, Pratt MR. Org. Lett. 2018; 20: 5032
  • 10 Eszenyi D, Kelemen V, Balogh F, Bege M, Csávás M, Herczegh P, Borbás A. Chem. Eur. J. 2018; 24: 4532
    • 11a Schmidt RR, Vankar YD. Acc. Chem. Res. 2008; 41: 1059
    • 11b Delaunay T, Poisson T, Jubault P, Pannecoucke X. Eur. J. Org. Chem. 2014; 7525
  • 12 Holzapfel CW, Marais CF, van Dyk MS. Synth. Commun. 1988; 18: 97
  • 13 Barroca N, Schmidt RR. Org. Lett. 2004; 6: 1551
  • 14 Peng P, Geng Y, Göttker-Schnetmann I, Schmidt RR. Org. Lett. 2015; 17: 1421
  • 15 Xue WH, Sun JS, Yu B. J. Org. Chem. 2009; 74: 5079
    • 16a Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 16b Nair V, Vellalath S, Babu BP. Chem. Soc. Rev. 2008; 37: 2691
    • 16c Biju AT, Kuhl N, Glorius F. Acc. Chem. Res. 2011; 44: 1182
    • 16d Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Sreekumar V. Chem. Soc. Rev. 2011; 40: 5336
    • 16e Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 16f Ryan SJ, Candish L, Lupton DW. Chem. Soc. Rev. 2013; 42: 4906
    • 16g Mahatthananchai J, Bode JW. Acc. Chem. Res. 2014; 47: 696
    • 16h Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
    • 16i Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 16j Zhao M, Zhang Y.-T, Chen J, Zhou L. Asian J. Org. Chem. 2018; 7: 54
    • 17a Zhao M, Yang H, Li M.-M, Chen J, Zhou L. Org. Lett. 2014; 16: 2904
    • 17b Dong Y.-T, Jin Q, Zhou L, Chen J. Org. Lett. 2016; 18: 5708
    • 17c Zhao M, Chen J, Yang H, Zhou L. Chem. Eur. J. 2017; 23: 2783
    • 17d Zhao M, Liu J.-L, Liu H.-F, Chen J, Zhou L. Org. Lett. 2018; 20: 2676
  • 18 Liu J.-L, Zhang Y.-T, Liu H.-F, Zhou L, Chen J. Org. Lett. 2017; 19: 5272
  • 19 Wang J.-J, Yang H, Gou B.-B, Zhou L, Chen J. J. Org. Chem. 2018; 83: 4730
    • 20a Movassaghi M, Schmidt MA. Org. Lett. 2005; 7: 2453
    • 20b He L, Guo H, Li Y.-Z, Du G.-F, Dai B. Chem. Commun. 2014; 50: 3719
    • 20c Li Y.-Z, Wang Y, Du G.-F, Zhang H.-Y, Yang H.-L, He L. Asian J. Org. Chem. 2015; 4: 327
    • 20d Chen J, Meng S, Wang L, Tang H, Huang Y. Chem. Sci. 2015; 6: 4184
    • 20e Cong Z.-S, Li Y.-g, Du G.-F, Gu C.-Z, Dai B, He L. Chem. Commun. 2017; 53: 13129
  • 21 Geiger J, Reddy BG, Winterfeld GA, Weber R, Przybylski M, Schmidt RR. J. Org. Chem. 2007; 72: 4367