Synthesis 2020; 52(07): 1103-1112
DOI: 10.1055/s-0039-1690052
paper
© Georg Thieme Verlag Stuttgart · New York

Trichloroisocyanuric Acid Mediated Oxidative Dehydrogenation of Hydrazines­: A Practical Chemical Oxidation To Access Azo Compounds

Yingpeng Su
College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China   Email: suyp51@nwnu.edu.cn
,
Xuan Liu
,
Jie Yu
,
Guiyan Cao
,
Rong Zhang
,
Yanan Zhao
,
Danfeng Huang
,
Ke-Hu Wang
,
,
› Author Affiliations
We are thankful for financial support from the National Natural Science Foundation of China (Grant No. 21502154, 21961034, 21362033) and the Science and Technology Program of Gansu Province (No. 17JR5RA073).
Further Information

Publication History

Received: 04 November 2019

Accepted after revision: 23 December 2019

Publication Date:
22 January 2020 (online)


Abstract

A highly efficient, metal-free, chemical oxidation of hydrazines has been implemented using environmentally friendly TCCA as oxidant. This benign protocol provides straightforward access to a wide range of azo compounds in THF in excellent yield. Altogether, 35 azo compounds were obtained in this way and scale-up preparations were performed. Additionally, a plausible mechanism was also proposed. Step-economical process, mild reaction conditions, operational simplicity, high reaction efficiency, and easy scale-up highlight the practicality of this methodology.

Supporting Information

 
  • References

    • 1a Zollinger H. Color Chemistry: Syntheses, Properties and Applications of Organic Dyes and Pigments, 3rd ed. VHCA/Wiley-VCH; Zürich/Weinheim: 2003
    • 1b Industrial Dyes: Chemistry, Properties, Applications . Hunger K. Wiley-VCH; Weinheim: 2003: 20
    • 1c Chudgar RJ. Azo Dyes. In Kirk-Othmer Encyclopedia of Chemical Technology. Wiley; Chichester: 2001: 425
    • 1d Merino E. Chem. Soc. Rev. 2011; 40: 3835
    • 2a Nørager NG, Poulsen MH, Strømgaard K. J. Med. Chem. 2018; 61: 8048
    • 2b Wong PT, Choi SK. Chem. Rev. 2015; 115: 3388
    • 2c Lee SH, Moroz E, Castagner B, Leroux J.-C. J. Am. Chem. Soc. 2014; 136: 12868
    • 2d Sandborn WJ. Am. J. Gastroenterol. 2002; 97: 2939
    • 2e DiCesare N, Lakowicz JR. Org. Lett. 2001; 3: 3891
    • 2f Yamaoka T, Makita Y, Sasatani H, Kim S.-I, Kimura Y. J. Controlled Release 2000; 66: 187
    • 2g Singh AK, Das J, Majumdar N. J. Am. Chem. Soc. 1996; 118: 6185
    • 3a Tang S, Deng Y.-L, Li J, Wang W.-X, Wang Y.-C, Li Z.-Z, Yuan L, Chen S.-L, Sheng R.-L. Chem. Commun. 2016; 52: 4470
    • 3b Ibrahim AA, Golonka AN, Lopez AM, Stockdill JL. Org. Lett. 2014; 16: 1072
    • 3c Larraufie M.-H, Courillon C, Ollivier C, Lacôte E, Malacria M, Fensterbank L. J. Am. Chem. Soc. 2010; 132: 4381
    • 3d Sha C.-K, Hsu C.-W, Chen Y.-T, Cheng S.-Y. Tetrahedron Lett. 2000; 41: 9865
    • 4a Hüll K, Morstein J, Trauner D. Chem. Rev. 2018; 118: 10710
    • 4b Bandara HM. D, Burdette SC. Chem. Soc. Rev. 2012; 41: 1809
    • 4c Beharry AA, Woolley GA. Chem. Soc. Rev. 2011; 40: 4422
    • 4d Feringa BL, van Delden RA, Koumura N, Geertsema EM. Chem. Rev. 2000; 100: 1789
    • 4e Kumar GS, Neckers DC. Chem. Rev. 1989; 89: 1915
    • 4f Gorostiza P, Isacoff EY. Science 2008; 322: 395
    • 4g Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH. Nat. Neurosci. 2004; 7: 1381
    • 4h Bushuyev OS, Tomberg A, Friščić T, Barrett CJ. J. Am. Chem. Soc. 2013; 135: 12556
    • 4i Puntoriero F, Ceroni P, Balzani V, Bergamini G, Vögtle F. J. Am. Chem. Soc. 2007; 129: 10714
    • 4j Cisnetti F, Ballardini R, Credi A, Gandolfi MT, Masiero S, Negri F, Pieraccini S, Spada GP. Chem. Eur. J. 2004; 10: 2011
    • 4k Commins P, Garcia-Garibay MA. J. Org. Chem. 2014; 79: 1611
    • 7a Lau Y.-F, Chan C.-M, Zhou Z, Yu W.-Y. Org. Biomol. Chem. 2016; 14: 6821
    • 7b Nair V, Biju AT, Mathew SC, Babu BP. Chem. Asian J. 2008; 3: 810
  • 8 Ling Y, Geng X, Jiao N. Green Oxidative Synthesis of Azo, Diazo, and Azido Compounds . In Green Oxidation in Organic Synthesis . Jiao N, Stahl SS. John Wiley & Sons; Hoboken: 2019: 221
    • 9a Saha A, Payra S, Selvaratnam B, Bhattacharya S, Pal S, Koodali RT, Banerjee S. ACS Sustainable Chem. Eng. 2018; 6: 11345
    • 9b John AA, Lin Q. J. Org. Chem. 2017; 82: 9873
    • 9c Dutta B, Biswas S, Sharma V, Savage N, Alpay S, Suib S. Angew. Chem. Int. Ed. 2016; 55: 2171
    • 9d Seth K, Roy SR, Kumar A, Chakraborti AK. Catal. Sci. Technol. 2016; 6: 2892
    • 9e Cai S, Rong H, Yu X, Liu X, Wang D, He W, Li Y. ACS Catal. 2013; 3: 478
    • 9f Zhu Y, Shi Y. Org. Lett. 2013; 15: 1942
    • 9g Okumura S, Lin C.-H, Takeda Y, Minakata S. J. Org. Chem. 2013; 78: 12090
    • 9h Monir K, Ghosh M, Mishra S, Majee A, Hajra A. Eur. J. Org. Chem. 2014; 2014: 1096
    • 9i Takeda Y, Okumura S, Minakata S. Angew. Chem. Int. Ed. 2012; 51: 7804
    • 9j Zhang C, Jiao N. Angew. Chem. Int. Ed. 2010; 49: 6174
    • 9k Grirrane A, Corma A, García H. Science 2008; 322: 1661
    • 9l Lim Y.-K, Lee K.-S, Cho C.-G. Org. Lett. 2003; 5: 979
    • 9m Noureldin NA, Bellegarde JW. Synthesis 1999; 939
    • 9n Zhu Z, Espenson JH. J. Org. Chem. 1995; 60: 1326
    • 9o Wawzonek S, McIntyre TW. J. Electrochem. Soc. 1972; 119: 1350
    • 9p Baer E, Tosoni AL. J. Am. Chem. Soc. 1956; 78: 2857
    • 10a Qiu J, Xiao J, Tang B, Ju B, Zhang S. Dyes Pigm. 2019; 160: 524
    • 10b Wang J, Wu B, Li S, Sinawang G, Wang X, He Y. ACS Sustainable Chem. Eng. 2016; 4: 4036
    • 10c He Y, He W, Wei R, Chen Z, Wang X. Chem. Commun. 2012; 48: 1036
    • 10d Dabbagh HA, Teimouri A, Chermahini AN. Dyes Pigm. 2007; 73: 239
    • 10e Barbero M, Cadamuro S, Dughera S, Giaveno C. Eur. J. Org. Chem. 2006; 2006: 4884
    • 10f Tomasulo M, Raymo FM. Org. Lett. 2005; 7: 4633
    • 10g Gung BW, Taylor RT. J. Chem. Educ. 2004; 81: 1630
    • 10h Haghbeen K, Tan EW. J. Org. Chem. 1998; 63: 4503
    • 10i Barbero M, Degani I, Dughera S, Fochi R, Perracino P. Synthesis 1998; 1235
    • 11a Gowenlock BG, Richter-Addo GB. Chem. Rev. 2004; 104: 3315
    • 11b Tie C, Gallucci JC, Parquette JR. J. Am. Chem. Soc. 2006; 128: 1162
    • 11c Ibne-Rasa KM, Lauro CG, Edwards JO. J. Am. Chem. Soc. 1963; 85: 1165
    • 11d Ueno K, Akiyoshi S. J. Am. Chem. Soc. 1954; 76: 3670
    • 12a Zhang Y.-F, Mellah M. ACS Catal. 2017; 7: 8480
    • 12b Moormann W, Langbehn D, Herges R. Synthesis 2017; 49: 3471
    • 12c Hu L, Cao X, Chen L, Zheng J, Lu J, Sun X, Gu H. Chem. Commun. 2012; 48: 3445
    • 12d Hu L, Cao X, Shi L, Qi F, Guo Z, Lu J, Gu H. Org. Lett. 2011; 13: 5640
    • 12e Grirrane A, Corma A, Garcia H. Nat. Protoc. 2010; 5: 429
    • 12f Zhu H, Ke X, Yang X, Sarina S, Liu H. Angew. Chem. Int. Ed. 2010; 49: 9657
    • 12g Sakai N, Fujii K, Nabeshima S, Ikeda R, Konakahara T. Chem. Commun. 2010; 46: 3173
    • 12h Wada S, Urano M, Suzuki H. J. Org. Chem. 2002; 67: 8254
    • 13a Buncel E. Acc. Chem. Res. 1975; 8: 132
    • 13b Zhang Y, Huang C, Lin X, Hu Q, Hu B, Zhou Y, Zhu G. Org. Lett. 2019; 21: 2261
    • 13c Wang L, Ishida A, Hashidoko Y, Hashimoto M. Angew. Chem. Int. Ed. 2017; 56: 870
    • 13d Brenzovich WE, Houk RJ. T, Malubay SM. A, Miranda JO, Ross KM, Abelt CJ. Dyes Pigm. 2002; 52: 101
    • 14a Tirapegui C, Acevedo-Fuentes W, Dahech P, Torrent C, Barrias P, Rojas-Poblete M, Mascayano C. Bioorg. Med. Chem. Lett. 2017; 27: 1649
    • 14b Donck S, Gravel E, Li A, Prakash P, Shah N, Leroy J, Li H, Namboothiri IN. N, Doris E. Catal. Sci. Technol. 2015; 5: 4542
    • 14c Gao W, He Z, Qian Y, Zhao J, Huang Y. Chem. Sci. 2012; 3: 883
    • 14d Tšubrik O, Sillard R, Mäeorg U. Synthesis 2006; 843
    • 14e Wang C.-L, Wang X.-X, Wang X.-Y, Xiao J.-P, Wang Y.-L. Synth. Commun. 1999; 29: 3435
    • 14f LeFevre GN, Crawford RJ. J. Am. Chem. Soc. 1986; 108: 1019
    • 14g Gaviraghi G, Pinza M, Pifferi G. Synthesis 1981; 608
    • 14h Dimroth K, Tüncher W. Synthesis 1977; 339
    • 14i Kim MH, Kim J. J. Org. Chem. 2018; 83: 1673
    • 14j Hashimoto T, Hirose D, Taniguchi T. Adv. Synth. Catal. 2015; 357: 3346
    • 14k Company A, Yao S, Ray K, Driess M. Chem. Eur. J. 2010; 16: 9669
    • 14l Trischler F. J. Therm. Anal. Calorim. 1979; 16: 119
    • 14m Drug E, Gozin M. J. Am. Chem. Soc. 2007; 129: 13784
    • 14n Jürmann G, Tšubrik O, Tammeveski K, Mäeorg U. J. Chem. Res. 2005; 2005: 661
    • 14o Starr JT, Rai GS, Dang H, McNelis BJ. Synth. Commun. 1997; 27: 3197
    • 14p Molina CL, Chow CP, Shea KJ. J. Org. Chem. 2007; 72: 6816
    • 14q Back TG, Collins S, Kerr RG. J. Org. Chem. 1981; 46: 1564
    • 14r Gephart RT. III, Huang DL, Aguila MJ. B, Schmidt G, Shahu A, Warren TH. Angew. Chem. Int. Ed. 2012; 51: 6488
    • 14s Church RF. R, Weiss MJ. J. Org. Chem. 1970; 35: 2465
    • 14t Štefane B, Polanc S. Synlett 2008; 1279
    • 14u Mihara M, Nakai T, Iwai T, Ito T, Mizuno T. Synlett 2007; 2124
    • 14v Bai L.-S, Gao X.-M, Zhang X, Sun F.-F, Ma N. Tetrahedron Lett. 2014; 55: 4545
    • 14w Barth M, Shah ST. A, Rademann J. Tetrahedron 2004; 60: 8703
    • 14x Sahoo MK, Saravanakumar K, Jaiswal G, Balaraman E. ACS Catal. 2018; 8: 7727
    • 14y Lv H, Laishram RD, Li J, Zhou Y, Xu D, More S, Dai Y, Fan B. Green Chem. 2019; 21: 4055
    • 14z Wang X, Wang X, Xia C, Wu L. Green Chem. 2019; 21: 4189
    • 14aa Du K.-S, Huang J.-M. Green Chem. 2019; 21: 1680
    • 15a Tilstam U, Weinmann H. Org. Process. Res. Dev. 2002; 6: 384
    • 15b Mendonca G, de Mattos M. Curr. Org. Synth. 2013; 10: 820
    • 15c Gaspa S, Carraro M, Pisano L, Porcheddu A, De Luca L. Eur. J. Org. Chem. 2019; 2019: 3544
    • 15d Blotny G. Tetrahedron 2006; 62: 9507
    • 15e Barros JC. Synlett 2005; 2115
    • 16a Gaspa S, Porcheddu A, De Luca L. Adv. Synth. Catal. 2016; 358: 154
    • 16b Jing Y, Daniliuc CG, Studer A. Org. Lett. 2014; 16: 4932
    • 16c De Luca L, Giacomelli G, Porcheddu A. Org. Lett. 2001; 3: 3041
    • 16d De Luca L, Giacomelli G, Masala S, Porcheddu A. J. Org. Chem. 2003; 68: 4999
    • 17a Viveros-Ceballos JL, Sayago FJ, Cativiela C, Ordóñez M. Eur. J. Org. Chem. 2015; 2015: 1084
    • 17b Azarifar D, Maleki B. J. Chin. Chem. Soc. 2013; 52: 1215
    • 17c Tilstam U, Harre M, Heckrodt T, Weinmann H. Tetrahedron Lett. 2001; 42: 5385
    • 18a Ye J, Wang Y, Liu R, Zhang G, Zhang Q, Chen J, Liang X. Chem. Commun. 2003; 2714
    • 18b Ye J, Wang Y, Chen J, Liang X. Adv. Synth. Catal. 2004; 346: 691
    • 19a Zhang W, Su Y, Wang K.-H, Wu L, Chang B, Shi Y, Huang D, Hu Y. Org. Lett. 2017; 19: 376
    • 19b Wen L, Huang D, Wang K.-H, Wang Y, Liu L, Yang Z, Su Y, Hu Y. Synthesis 2018; 50: 1979
    • 19c Su Y, Shi Y, Chang B, Wu L, Chong S, Zhang W, Huang D, Wang K, Hu Y. Chin. J. Org. Chem. 2018; 38: 1454
    • 19d Su Y, Zhao Y, Chang B, Zhao X, Zhang R, Liu X, Huang D, Wang K.-H, Huo C, Hu Y. J. Org. Chem. 2019; 84: 6719
  • 21 Zhang Y, Tang Q, Luo M. Org. Biomol. Chem. 2011; 9: 4977
  • 22 Khurana JM, Ray A. Bull. Chem. Soc. Jpn. 1996; 69: 407
  • 23 Urankar D, Steinbücher M, Kosjek J, Košmrlj J. Tetrahedron 2010; 66: 2602