Methods Inf Med 2006; 45(05): 564-573
DOI: 10.1055/s-0038-1634119
Original Article
Schattauer GmbH

Electrodynamic Heart Model Construction and ECG Simulation

L. Xia
1   Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
,
M. Huo
2   Department of Computer Science, Zhejiang University City College, Hangzhou, China
,
Q. Wei
3   The School of Information Technology and Electrical Engineering, The University of Queensland, Queensland, Australia
,
F. Liu
1   Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
3   The School of Information Technology and Electrical Engineering, The University of Queensland, Queensland, Australia
,
S. Crozier
3   The School of Information Technology and Electrical Engineering, The University of Queensland, Queensland, Australia
› Author Affiliations
Further Information

Publication History

Received: 17 November 2004

accepted: 23 February 2006

Publication Date:
07 February 2018 (online)

Summary

Objectives: In this paper, we present a unified electrodynamic heart model that permits simulations of the body surface potentials generated by the heart in motion. The inclusion of motion in the heart model significantly improves the accuracy of the simulated body surface potentials and therefore also the 12-lead ECG.

Methods: The key step is to construct an electromechanical heart model. The cardiac excitation propagation is simulated by an electrical heart model, and the resulting cardiac active forces are used to calculate the ventricular wall motion based on a mechanical model. The source-field point relative position changes during heart systole and diastole. These can be obtained, and then used to calculate body surface ECG based on the electrical heart-torso model.

Results: An electromechanical biventricular heart model is constructed and a standard 12-lead ECG is simulated. Compared with a simulated ECG based on the static electrical heart model, the simulated ECG based on the dynamic heart model is more accordant with a clinically recorded ECG, especially for the ST segment and T wave of a V1-V6 lead ECG. For slight-degree myocardial ischemia ECG simulation, the ST segment and T wave changes can be observed from the simulated ECG based on a dynamic heart model, while the ST segment and T wave of simulated ECG based on a static heart model is almost unchanged when compared with a normal ECG.

Conclusions: This study confirms the importance of the mechanical factor in the ECG simulation. The dynamic heart model could provide more accurate ECG simulation, especially for myocardial ischemia or infarction simulation, since the main ECG changes occur at the ST segment and T wave, which correspond with cardiac systole and diastole phases.

 
  • References

  • 1 Noble D. Modelling the heart: from genes to cells to the whole organ. Science 2002; 295: 1678-82.
  • 2 Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential: I. Simulations of ionic currents and concentration changes. Circ Res 1994; 74: 1071-96.
  • 3 Wei D. Whole-heart modeling: progress, principles and applications. Prog Biophys Mol Biol 1997; 67: 17-66.
  • 4 Wu D, Ono K, Hosaka H, He B. Simulation of body surface Laplacian maps during ventricular pacing in a 3D inhomogeneous heart-torso model. Methods Inf Med 2000; 39: 196-99.
  • 5 Hunter PJ, Pullan AJ, Smaill BH. Modeling total heart function. Ann Rev Biomed Eng 2003; 5: 147-77.
  • 6 Eyal S, Akselrod S. Bifurcation in a simple model of the cardiovascular system. Methods Inf Med 2000; 39: 118-21.
  • 7 Smith NP, Mulquiney PJ, Nash MP. et al Mathematical modeling of the heart: cell to organ. Chaos, Solitons and Fractals 2002; 13: 1613-21.
  • 8 Siregar P, Julen N, Sinteff JP. Computational integrative physiology: At the convergence of the life and computational sciences - A case study in cardiac rhythmic disorders. Methods Inf Med 2003; 42: 177-84.
  • 9 Huiskamp GJ. Simulation of depolarization in a membrane-equations-based model of the anisotropic ventricle. IEEE Trans Biomed Eng 1998; 45: 847-55.
  • 10 Trudel MC, Dube B, Potse M, Gulrajani RM, Leon LJ. Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing. IEEE Trans Biomed Eng 2004; 51: 1319-29.
  • 11 Malmivuo J, Plonsey R. Bioelectromagnetism - Principles and Applications of Bioelectric and Biomagnetic Fields. New York, Oxford: Oxford University; 1995
  • 12 Papademetris X, Sinusas AJ, Dione DP. et al Estimation of 3-D left ventricular deformation from medical images using biomedical models. IEEE Trans Med Imag 2002; 21: 786-800.
  • 13 Azhari H, Oliker S. et al Three-dimensional mapping of acute ischemic regions using artificial neural networks and tagged MRI. IEEE Trans Biomed Eng 1996; 43: 619-26.
  • 14 Linares P, Torrealba V. et al Deformable model application on segmentation in 3-D echocardiography. Computers in Cardiology 1996; 23: 413-6.
  • 15 Axel L, Dougherty L. MR imaging of motion with spatial modulation of magnetization. Radiology 1989; 171: 841-5.
  • 16 Rogers WJ, Shapiro EP, Weiss JL, Buchalter MB. et al Quantification of and correction for left ventricular systolic long axis shortening by magnetic resonance tissue tagging and slice isolation. Circulation 1991; 84: 721-31.
  • 17 Moore CC, Lugo-Olivieri CH, McVeigh ER, Zerhouni EA. Three-dimensional systolic strain patterns in the normal human left ventricle: chara acterization with Tagged MR Imaging. Radiology 2000; 214: 453-66.
  • 18 Haber I, Metaxas DN, Axel L. Three-dimensional motion reconstruction and analysis of the right ventricle using tagged MRI. Medical Image Analysis 2000; 4: 335-55.
  • 19 Denney TS, Gerber BL, Yan L.. Unsupervised reconstruction of a three-dimensional left strain from parallel tagged cardiac images. Magnetic Resonance in Medicine 2003; 49: 743-54.
  • 20 Tustison NJ, Davila-Roman VG, Amini AA. Myocardial kinematics from tagged MRI based on a 4-D B-spline model. IEEE Trans Biomed Eng 2003; 50: 1038-40.
  • 21 Huyghe JM. et al Porous medium finite element model of the beating left ventricle. Am J Physiol 1992; 31: H1256-H1267.
  • 22 Guccione JM, Costa KD, McCulloch AD. Finite element stress analysis of left ventricular mechanics in the beating dog heart. J Biomech 1995; 28: 1167-77.
  • 23 Bovendeerd PHM. et al Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study. J Biomech 1992; 25: 1129-40.
  • 24 Kerckhoffs RCP, Bovendeerd PHM, Prinzen FW, Smits K, Arts T. Intra- and interventricular asynchrony of electromechanics in the ventricularly paced heart. J Eng Math 2003; 47: 201-16.
  • 25 Kerckhoffs RCP, Bovendeerd PHM, Kotte JCS, Prinzen FW, Smits K and Arts T. Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: A model study. Ann Biomed Eng 2003; 31: 1-12.
  • 26 Kerckhoffs RCP, Faris OP, Bovendeerd PHM, Prinzen FW, Smits K, McVeigh ER, Arts T. Timing of depolarization and contraction in the paced canine left ventricle: model and experiment. J Cardiovasc Electrophysiol 2003; 14: S188-S195.
  • 27 Lu W, Xia L. Computer simulation of epicardial potentials using a heart-torso model with realistic geometry. IEEE Trans Biomed Eng 1996; 43: 211-7.
  • 28 Leon LJ, Horacek BM. Computer model of excitation and recovery in the anisotropic myocardium. II. Excitation in the simplified left ventricle. J Electrocardiology 1991; 24: 17-31.
  • 29 Scollan DF, Holmes A, Winslow RL. et al Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol 1998; 275: H2308-H2318.
  • 30 Chang FK, Perez JL, Chang KY. Analysis of thick laminated composites. J Compos Mater 1990; 24: 801-22.
  • 31 Beyar R, Sideman S. A computer study of the left ventricular performance based on fiber structure, sarcomere dynamics, and transmural electrical propagation velocity. Circ Res 1984; 55: 358-75.
  • 32 Tokuda M, Sekioka K, Ueno T. et al Numerical simulator for estimation of mechanical function of human left ventricle (study of basic system). JSME Int J 1994; A37: 64-70.
  • 33 Xia L, Huo M, Wei Q, Liu F, Crozier S. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model. Physics in Medicine and Biology 2005; 50: 1901-17.
  • 34 Miller WT, Geselowitz DB. Simulation studies of the electrocardiogram. II. Ischemia and infarction. Circ Res 1978; 43: 315-23.
  • 35 http://www.emedicinehealth.com/articles/10973-8.asp#
  • 36 Hoekema R, Uijen GJ, van Erning L, van Oosterom A. Interindividual variability of multilead electrocardiographic recordings: influence of heart position. J Electrocardiol 1999; 32: 137-48.
  • 37 Liu F, Xia L, Zhang X. Analysis of the influence of the electrical asynchrony on regional mechanics of the infarcted left ventricle using electromechanical heart models. JSME Int J 2003; A46: 1-9.
  • 38 Pueyo E, García J, Wagner G. et al Time course of ECG depolarization and repolarization changes during ischemia in PTCA recordings. Methods Inf Med 2004; 43: 43-6.
  • 39 Hoekema R, Uijen GJ, van Oosterom A. The number of independent signals in body surface maps. Methods Inf Med 1999; 38: 119-24.
  • 40 Fogel MA, Weinberg PM, Gupta KB. et al Mechanics of the single left ventricle - A study in ventricular-ventricular interaction II. Circulation 1998; 98: 330-8.
  • 41 Omens JH, Fung YC. Residual strain in rat left ventricle. Circ Res 1990; 66: 37-45.
  • 42 Rodriguez EK, Omens JH, Waldman LK, McCulloch AD. Effect of residual stress on transmural sarcomere length distribution in rat left ventricle. Am J Physiol 1993; 264: H1048-H1056.
  • 43 Yan GX, Shimizu W, Antzelevitch C. Characteristics and distribution of M cells in arterially perfused canine left ventricular wedge preparations. Circulation 1998; 98: 1921-7.