Subscribe to RSS
DOI: 10.1055/s-0037-1622369
Hämatologische und biochemische Besonderheiten bei Katzen mit malignen Neoplasien im Zusammenhang mit dem paraneoplastischen Kachexiesyndrom
Hematological and biochemical alterations in cats with malignant neoplasms as signs of a paraneoplastic cachexia syndromePublication History
Publication Date:
04 January 2018 (online)

Zusammenfassung
In der vorliegenden Arbeit wurden Stoffwechselveränderungen von Katzen mit unterschiedlichen Neoplasien unter besonderer Berücksichtigung des malignen Lymphoms und des Fibrosarkoms untersucht. Typische klinische Befunde der Tiere mit disseminierten Tumoren waren Anorexie und Gewichtsverlust bis hin zur Kachexie. Bei der Auswertung der Laborergebnisse ergaben sich signifikante Unterschiede sowohl innerhalb der verschiedenen Tumorgruppen als auch im Vergleich zu den gesunden Kontrolltieren. Katzen mit hämatopoetischen Tumoren, anderen Malignomen, Fibrosarkom oder Kontrollkatzen hatten im Serum mediane Laktatkonzentrationen von 2,9/2,6/2,0/1,6 mmol/l, mediane Proteinkonzentrationen von 6,6/7,4/7,8/8,0 g/dl, mediane Albuminkonzentrationen von 3,5/3,9/4,4/5,0 g/dl, mediane Methylhistidin-Konzentrationen von 37,8/25,6/12,3/14,6 µmol/l, mediane Glyzinkonzentrationen von 250,6/255,1/261,9/330,0 µmol/l, mediane Phenylalaninkonzentrationen von 76,5/80,3/69,9/57,2 µmol/l und mediane Glutamatkonzentrationen von 122,0/112,3/104,9/78,6 µmol/l. Katzen mit hämatopoetischen Tumoren zeigten Stoffwechselveränderungen, manifestiert durch hohe Laktatkonzentration, Hypoproteinämie mit niedriger Albumin- und Globulinfraktion sowie ein verändertes Serum-Aminogramm. Die Serumaminogramme waren gegenüber denen der Kontrollgruppe nicht von einer Verringerung der glukoplastischen Aminosäuren geprägt, sondern – speziell bei den Katzen mit hämatopoetischen Neoplasien – unter anderem von hohen Glutamat-, Phenylalanin- und 3-Methylhistidin-Konzentrationen.
Zusammenfassend ist festzustellen
Katzen mit systemischen oder mit lokalen malignen Tumoren und Kontrollkatzen weisen signifikante Unterschiede im Kohlenhydrat-, Protein- und Aminosäuren-Metabolismus auf. Die Unterschiede waren bei systemischen malignen Neoplasien, wie hämatopoetischen Tumoren, deutlicher als bei anderen Malignomen. Weniger ausgeprägte Differenzen bestanden zwischen Katzen mit lokalen malignen Tumoren (wie dem Fibrosarkom) und Kontrolltieren.
Summary
In this study, metabolic alterations in cats suffering from different forms of neoplasms, mostly malignant lymphoma or fibrosarcoma, were investigated. Most overt clinical features in those cats were anorexia and weight loss, often leading to cachexia. Laboratory analysis showed significant differences within the group of cats suffering from neoplasms, and also between tumor bearing and healthy cats. Cats with hematopoetic tumors, other malignomas, fibrosarcomas, or control cats had median serum lactic acid concentrations of 2.9/2.6/2.0/1.6 mmol/l, median serum protein concentrations of 6.6/7.4/7.8/8.0 g/dl, median serum albumin concentrations of 3.5/3.9/4.4/5.0 g/dl, median serum 3-methylhistidin concentrations of 37.8/25.6/12.3/14.6 µmol/l, median serum glycine concentrations of 250.6/255.1/ 261.9/330.0 µmol/l, median serum phenylalanin concentrations of 76.5/80.3/69.9/57.2 µmol/l, and median serum glutamate concentrations of 122.0/112.3/104.9/78.6 µmol/l. Especially cats with hematopoetic neoplasms exhibited alterations of their metabolism manifested by hyperlactatemia, hypoproteinemia with decreased serum albumin and globulin concentration, and altered serum amino acid patterns. There was no decrease in glucoplastic amino acids, but – especially in cats with hematopoetic neoplasms – significant increases in glutamate, phenylalanine and 3-methylhistidine serum concentrations.
Conclusion of this study
Cats with systemic or with local malignant neoplasms and control cats display significant differences in their carbohydrate, protein, and amino acid metabolism. The differences were more pronounced in systemic malignant tumors like hematopoetic neoplasias than in other malignancies. Cats with local malignant tumors like fibrosarcomas showed less differences to control cats.
-
Literatur
- 1 Afting EG, Bernhardt W, Janzen RWC. et al. Quantitative importance of non-skeletal muscle N-methylhistidine and creatinine in human urine. Biochem J 1981; 200: 449-52.
- 2 Ballard FJ, Thomas FM. 3-Methylhistidine as a measure of skeletal muscle breakdown in human subjects: The case of its continued use. Clin Sci 1983; 65: 209-15.
- 3 Bennegard K, Lindmark L, Eden E, Svaninger G. et al. Flux of amino acids across the leg in weight losing-cancer patients. Cancer Res 1984; 44: 386-93.
- 4 Biourge VC, Massat B, Groff JM, Morris JG. et al. Effects of protein, lipid, or carbohydrate supplementation on hepatic lipid accumulation during rapid weight loss in obese cats. Am J Vet Res 1994; 55: 1406-15.
- 5 Braund KG, Everett RM, Albert RA. Neurologic manifestations of monoclonal IgM gammopathy associated with Iymphocytic leukemia in a dog. J Am Vet Med Assoc 1978; 172: 1407-10.
- 6 Bremer HJ, Duran M, Kamerling JP, Przyrembel W. et al. Secondary disturbances of amino acids. In: Disturbances of Amino Acid Metabolism: Clinical Chemistry and Diagnosis. Baltimore: Urban & Schwarzenberg; 1981: 389-420.
- 7 Brennan MF. Uncomplicated starvation versus cancer cachexia. Cancer Res 1977; 37: 2359-64.
- 8 Brenner U, Schindler J, Müller JM, Walter M. et al. Veränderungen der Plasmaaminosäurenspiegel als mögliche Tumormarker bei Karzinomen des Gastrointestinaltraktes. Infusionstherapie 1985; 12: 241-6.
- 9 Brinkmann C, Kaul N. Arterielle und venöse Konzentrationen energieliefernder Substrate und ihrer Metaboliten bei Patienten mit malignen Tumoren. Med Diss; Heidelberg-Mannheim: 1982
- 10 Caldwell MD. Local glutamine metabolism in wounds and inflammation. Metabolism 1989; 38 (Suppl. 01) 34-9.
- 11 Costa G. Cachexia, the metabolic component of metastatic disease. Cancer Res 1977; 37: 2327-35.
- 12 Dempsey DT, Mullen JL. Macronutrition requirements in the malnourished cancer patient. Cancer 1985; 55: 290-4.
- 13 Doolittle GC, Wurster MW, Rosenfeld CS, Bodensteiner DC. Malignancyinduced lactate acidosis. South Med 1988; 81: 533-6.
- 14 Dorn CR, Taylor DON, Schneider R, Hibbard HH. et al. Survey of animal neoplasms in Alameda and Contra Costa Counties, California. II. Cancer morbidity in dogs and cats from Alameda County. J Natl Canc Inst 1968; 440: 307-18.
- 15 Dröge W, Eck HP, Betzler M, Schlag P. et al. Plasma glutamate concentration and lymphocyte activity. J Cancer Res Clin Oncol 1988; 114: 124-8.
- 16 Eck HP, Betzler M, Schlag P, Dröge W. Partial recovery of lymphocyte activity in patients with colorectal cancer after curative surgical treatment and return of plasma glutamate concentrations to normal levels. J Cancer Res Clin Oncol 1990; 116: 648-50.
- 17 Eck HP, Drings P, Dröge W. Plasma glutamate levels, lymphocyte reactivity and death rate in patients with bronchial carcinoma. J Cancer Res Clin Oncol 1989; 115: 571-4.
- 18 Engle GC, Brodey RS. A retrospective study of 395 feline neoplasms. J Am Anim Hosp Assoc 1969; 05: 21-31.
- 19 Fischer JE, Chance WT. Total parenteral nutrition, glutamine, and tumor growth. J Parent Ent Nutr 1990; 14: 86S-89S.
- 20 Gil A, Faus MJ, Robles R, Pita ML. et al. Urinary 3-Methylhistidin derivative as indicator of nutrients intake in low-birth-weight infants. Horm Metabol Res 1984; 16: 667-70.
- 21 Goldstein RE, Marks SL, Cowgill LD, Kass PH. et al. Plasma amino acid profiles in cats with naturally acquired chronic renal failure. Am J Vet Res 1999; 60: 109-13.
- 22 Goossens V, Grooten J, Fiers W. The oxidative metabolism of glutamine. J Biol Chem 1996; 271: 192-6.
- 23 Hack A, Stütz O, Schykowski M, Kellerer A. et al. Elevated venous glutamate levels in (pre)catabolic conditions result at least partly from a decreased glutamate transport activity. Mol Med 1996; 74: 337-43.
- 24 Hardy WD. Haematopoetic tumors of cats. J Am Anim Hosp Assoc 1981; 17: 921-40.
- 25 Harris CI. Reappraisal of the quantitative importance of nonskeletal-muscle source of N-methylhistidine in urine. Biochem J 1981; 194: 1011-4.
- 26 Holroyde CP, Reichard GA. Carbohydrate metabolism in cancer cachexia. Cancer Treat Rep 1981; 65 (Suppl. 05) 55-9.
- 27 Holzworth J. Leukemia and related neoplasms in the cat. J Am Vet Med Assoc 1960; 136: 47-69.
- 28 Jacobs RM, Lumsden JH, Taylor J. Canine and feline reference values. In: Current Veterinary Therapy XIII. Kirk RW, Bonagura JD. eds. Philadelphia: Saunders; 2000: 1207-27.
- 29 Kinscherf R, Hack V, Fischbach T, Friedmann B. et al. Low plasma glutamine in combination with high glutamate levels indicate risk for loss of body cell mass in healthy individuals: the effect of N-acetyl-cysteine. J Mol Med 1996; 74: 393-400.
- 30 Kraft W. Dürr U. Klinische Labordiagnostik in der Tiermedizin, 5. Aufl. Stuttgart: Schattauer; 1999
- 31 Kurzer M, Janiszewski J, Meguid MM. Amino acid profiles in tumorbearing and pair-fed nontumor-bearing malnourished rats. Cancer 1988; 632: 1492-6.
- 32 Landel AM, Hammond WG, Meguid MM. Aspects of amino acid and protein metabolism in cancer-bearing states. Cancer 1985; 55: 230-7.
- 33 Larkin M. Thwarting the dwindling progression of cachexia. Lancet 1998; 351: 1336.
- 34 Lukasi HJ, Mendez J, Buskirk ER, Cohn SH. Relationship between endogenous 3-methylhistidin excretion and body composition. Am J Physiol 1981; 240: E302-E307.
- 35 Lundholm K, Bennegard K, Edén E, Svaninger G. et al. Efflux of 3-methylhistidine from the leg in cancer patients who experience weight loss. Cancer Res 1982; 4807-11.
- 36 Mahony OM, Moore AS, Cotter SM, Engler SJ. et al. Alimentary lymphoma in cats: 28 cases (1988-1993). J Am Vet Med Assoc 1995; 207: 1593-8.
- 37 Meincke JE, Hobbie WV, Hardy WD. Lymphoreticular malignancies in the cat: clinical findings. J Am Vet Med Assoc 1972; 160: 1093-8.
- 38 Mooney SC, Hayes AA. Lymphoma in the cat: An approach to diagnosis and management. Semin Vet Med Surg (Small Anim) 1986; 51-7.
- 39 Ogilvie GK, Walters L, Salman D, Fettman MJ. et al. Alterations in carbohydrate metabolism in dogs with nonhematopoietic malignancies. Am J Vet Res 1997; 58: 277-81.
- 40 Ogilvie GK, Vail DM, Wheeler SL, Ford RB. et al. Alterations in fat and protein metabolism in dogs with cancer. Proc Vet Cancer Soc 1988; 31.
- 41 Ollenschläger G, Karner J, Karner Hanusch J. et al. Plasma glutamate – a prognostic marker of cancer and of other immunodeficience syndromes?. Scand J Lab Invest 1989; 49: 773-7.
- 42 Reinacher M. Praxisrelevante Tumoren bei der Katze. Prakt Tierarzt, Coll Vet XXVII 1997; 10-2.
- 43 Schmidt RE, Langham RF. A survey of feline neoplasms. J Am Vet Med Assoc 1967; 151: 1325-8.
- 44 Striebel JP, Saeger HD, Ritz R, Leweling H, Holm E. Aminosäurenaufnahme und -abgabe kolorektaler Karzinome des Menschen. Infusionstherapie 1986; 13: 92-104.
- 45 Vail DM, Ogilvie GK, Wheeler SL, Fettman MJ. et al. Alterations in carbohydrate metabolism in canine lymphoma. J Vet Intern Med 1990; 04: 8-11.
- 46 Vail DM, Ogilvie GK, Wheeler SL. Metabolic alterations in patients with cancer cachexia. Comp Cont Educ Pract Vet 1990; 12: 381-7.
- 47 Watanabe A, Higashi T, Sakata T, Nagashima H. Serum amino acid levels in patients with hepatocellular carcinoma. Cancer 1984; 54: 1875-82.
- 48 Waterhouse C, Jeanpretre N, Keilson J. Gluconeogenesis from alanine in patients with progressive malignant disease. Cancer Res 1979; 39: 1968-72.
- 49 Weller RE. Paraneoplastic disorders in dogs with hematopoietic tumors. Vet Clin North Am (Small Anim Pract) 1985; 15: 805-16.
- 50 Young VR, Munro HN. 3-Methylhistidine and muscle protein turnover: an overview. Federation Proc 1978; 37: 2291-300.