Thromb Haemost 1999; 82(02): 326-336
DOI: 10.1055/s-0037-1615850
Research Article
Schattauer GmbH

Binding of Abciximab to αVβ3 and Activated αMβ2 Receptors: With a Review of Platelet-Leukocyte Interactions

Barry S. Coller
1   Department of Medicine, Mount Sinai School of Medicine, NY, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
09 December 2017 (online)

Introduction

Murine monoclonal antibody 7E3, as well as the derivatives of 7E3 used in vivo [7E3-F(ab’)2, 7E3 Fab’, mouse/human chimeric 7E3 Fab (c7E3 Fab; abciximab; ReoPro)], inhibit platelet aggregation induced by physiologic and pathologic agonists by binding to the platelet glycoprotein (GP) IIb/IIIa receptor.1,2 This biological activity formed the basis of its development as an antithrombotic agent to prevent and treat plateletmediated ischemic cardiovascular disease. During its development, 7E3 was reported to also react with two other integrin receptors, the αVβ3 “vitronectin” receptor (CD51/CD61)3,4 and at least one activation-dependent conformation of the αMβ2 or “Mac-1” receptor (CD11b/CD18).5 Whereas both αVβ3 and αMβ2 have been implicated in a number of different physiologic and pathologic processes, it is possible that some effects of abciximab are due to its reactivity with one or the other of these receptors. Moreover, the reactivity of abciximab with these receptors opens up the possibility that abciximab, or other agents that inhibit these receptors, may be useful in preventing or treating disorders in which these receptors play a role. This review will address these issues.

Note: Dr. Coller is an inventor of abciximab, and in accordance with Federal law and the policies of the Research Foundation of the State University of New York, he shares in royalties paid to the Foundation for sales of abciximab.


 
  • References

  • 1 Coller BS. Platelet GPIIb/IIIa antagonists: the first anti-integrin receptor therapeutics. J Clin Invest. 1997; 99: 1467-1471.
  • 2 Coller BS, Scudder LE, Beer J, Gold HK, Folts JD, Cavagnaro J, Jordan R, Wagner C, Iuliucci J, Knight D, Ghrayeb J, Smith C, Weisman H, Berger H. Monoclonal antibodies to platelet GPIIb/IIIa as antithrombotic agents. Ann NY Acad Sci. 1991; 614: 193-213.
  • 3 Charo IF, Fitzgerald LA, Steiner B, Rall Jr. SC, Bekeart LS, Phillips DR. Platelet glycoproteins IIb and IIIa: evidence for a family of immunologically and structurally related glycoproteins in mammalian cells. Proc Natl Acad Sci USA. 1986; 83: 8351-8356.
  • 4 Coller BS, Cheresh DA, Asch E, Seligsohn U. Platelet vitronectin receptor expression differentiates Iraqi-Jewish from Arab Patients with Glanzmann thrombasthenia in Israel. Blood 1991; 77: 75-83.
  • 5 Altieri DC, Edgington TS. A monoclonal antibody reacting with distinct adhesion molecules defines a transition in the functional state of the receptor CD11b/CD18 (Mac-1). J Immunol. 1988; 141: 2656-2660.
  • 6 Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994; 84: 2068-2101.
  • 7 Zhou L, Lee DH, Plescia J, Lau CY, Altieri DC. Differential ligand binding specificities of recombinant CD11b/CD18 integrin I-domain. J Biol Chem. 1994; 269: 17075-17079.
  • 8 Diamond MS, Garcia-Aguilar J, Bickford JK, Corbi AL, Springer TA. The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J Cell Biol. 1993; 120: 1031-1043.
  • 9 Languino LR, Plescia J, Duperray A, Brian AA, Plow EF, Geltosky JE, Altieri DC. Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway. Cell. 1993; 73: 1423-1434.
  • 10 Altieri DC, Plescia J, Plow EF. The structural motif glycine 190-valine 202 of the fibrinogen gamma chain interacts with CD11b/CD18 integrin (αMβ2, Mac-1) and promotes leukocyte adhesion. J Biol Chem. 1993; 268: 1847-1853.
  • 11 Ugarova TP, Solovjov DA, Zhang L, Loukinov DI, Yee VC, Medved LV, Plow EF. Identification of a novel recognition sequence for integrin αMβ2 within the gamma-chain of fibrinogen. J Biol Chem. 1998; 273: 22519-22527.
  • 12 Sitrin RG, Pan PM, Srikanth S, Todd RF. Fibrinogen activates NF-κB transcription factors in mononuclear phagocytes. J Immunol. 1998; 161: 1462-1470.
  • 13 Mocsai A, Ligeti E, Lowell CA, Berton G. Adhesion-dependent degranulation of neutrophils requires the Src family kinases Fgr and Hck. J Immunol. 1999; 162: 1120-1126.
  • 14 Lee JO, Rieu P, Arnaout MA, Liddington R. Crystal structure of the A domain from the α subunit of integrin CR3 (CD11b/CD18). Cell. 1995; 80: 631-638.
  • 15 Baldwin ET, Sarver RW, Bryant GLJ, Curry KA, Fairbanks MB, Finzel BC, Garlick RL, Heinrikson RL, Horton NC, Kelley LL, Mildner AM, Moon JB, Mott JE, Mutchler VT, Tomich CS, Watenpaugh KD, Wiley VH. Cation binding to the integrin CD11b I domain and activation model assessment. Structure. 1998; 6: 923-935.
  • 16 Lee JO, Bankston LA, Arnaout MA, Liddington RC. Two conformations of the integrin A-domain (I-domain): a pathway for activation?. Structure. 1995; 3: 1333-1340.
  • 17 Dickeson SK, Santoro SA. Ligand recognition by the I domain-containing integrins. Cell Mol Life Sci. 1998; 54: 556-566.
  • 18 Leahy DJ. Implications of atomic-resolution structures for cell adhesion. Annu Rev Cell Dev Biol. 1997; 13: 363-393.
  • 19 McGuire SL, Bajt ML. Distinct ligand binding sites in the I domain of integrin αMβ2 that differentially affect a divalent cation-dependent conformation. J Biol Chem. 1995; 270: 25866-25871.
  • 20 Goodman TG, Bajt ML. Identifying the putative metal ion-dependent adhesion site in the β2 (CD18) subunit required for αLβ2 and αMβ2 ligand interactions. J Biol Chem. 1996; 271: 23729-23736.
  • 21 Lin EK, Ratnikov BI, Tsai PM, Gonzalez ER, McDonald S, Pelletier AJ, Smith JW. Evidence that the integrin β3 and β5 subunits contain a metal ion-dependent adhesion site-like motif but lack an I domain. J Biol Chem. 1997; 272: 14236-14243.
  • 22 Winn R, Vedder N, Ramamoorthy C, Sharar S, Harlan J. Endothelial and leukocyte adhesion molecules in inflammation and disease. Blood Coagul Fibrinolysis. 1998; 9: S17-S23.
  • 23 Altieri DC. Coagulation assembly on leukocytes in transmembrane signaling and cell adhesion. Blood 1993; 81: 569-579.
  • 24 Furie B, Furie BC. The molecular basis of platelet and endothelial cell interaction with neutrophils and monocytes: role of P-selectin and the P-selectin ligand, PSGL-1. Thromb Haemost. 1995; 74: 224-227.
  • 25 McEver RP, Cummings RD. Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest. 1997; 100: 485-491.
  • 26 Languino LR, Duperray A, Joganic KJ, Fornaro M, Thornton GB, Altieri DC. Regulation of leukocyte-endothelium interaction and leukocyte transendothelial migration by intercellular adhesion molecule 1 fibrinogen recognition. Proc Natl Acad Sci USA. 1995; 92: 1505-1509.
  • 27 Sriramarao P, Languino LR, Altieri DC. Fibrinogen mediates leukocyte-endothelium bridging in vivo at low shear forces. Blood 1996; 88: 3416-3423.
  • 28 Larsen E, Celi A, Gilbert GE, Furie BC, Erban JK, Bonfanti R, Wagner DD, Furie B. PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell. 1989; 59: 305-312.
  • 29 Hamburger SA, McEver RP. GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood 1990; 75: 550-554.
  • 30 Spangenberg P, Redlich H, Bergmann I, Losche W, Gotzrath M, Kehrel B. The platelet glycoprotein IIb/IIIa complex is involved in the adhesion of activated platelets to leukocytes. Thromb Haemost. 1993; 70: 514-521.
  • 31 Yeo EL, Sheppard JA, Feuerstein IA. Role of P-selectin and leukocyte activation in polymorphonuclear cell adhesion to surface adherent activated platelets under physiologic shear conditions (an injury vessel wall model). Blood 1994; 83: 2498-2507.
  • 32 Lalor P, Nash GB. Adhesion of flowing leucocytes to immobilized platelets. Br J Haematol. 1995; 89: 725-732.
  • 33 Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the β2- integrin CD11b/CD18. Blood 1996; 88: 146-157.
  • 34 Evangelista V, Manarini S, Rotondo S, Martelli N, Polischuk R, McGregor JL, de Gaetano G, Cerletti C. Platelet/polymorphonuclear leukocyte interaction in dynamic conditions: evidence of adhesion cascade and cross talk between P-selectin and the β2 integrin CD11b/CD18. Blood 1996; 88: 4183-4194.
  • 35 Sheikh S, Nash GB. Continuous activation and deactivation of integrin CD11b/CD18 during de novo expression enables rolling neutrophils to immobilize on platelets. Blood 1996; 87: 5040-5050.
  • 36 Kirchhofer D, Riederer MA, Baumgartner HR. Specific accumulation of circulating monocytes and polymorphonuclear leukocytes on platelet thrombi in a vascular injury model. Blood 1997; 89: 1270-1278.
  • 37 Weber C, Springer TA. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to αMβ2 and stimulated by platelet-activating factor. J Clin Invest. 1997; 100: 2085-2093.
  • 38 Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), αVβ3 integrin, and GPIbα. J Exp Med. 1998; 187: 329-339.
  • 39 Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, Kroczek RA. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391: 591-594.
  • 40 Konstantopoulos K, Neelamegham S, Burns AR, Hentzen E, Kansas GS, Snapp KR, Berg EL, Hellums JD, Smith CW, McIntire LV, Simon SI. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and β2-integrin. Circulation. 1998; 98: 873-882.
  • 41 Silverstein RL, Asch AS, Nachman RL. Glycoprotein IV mediates thrombospondin-dependent platelet-monocyte and platelet-U937 cell adhesion. J Clin Invest. 1989; 84: 546-552.
  • 42 Walz A, Dewald B, von Tscharner V, Baggiolini M. Effects of the neutrophil-activating peptide NAP-2, platelet basic protein, connective tissue-activating peptide III and platelet factor 4 on human neutrophils. J Exp Med. 1989; 170: 1745-1750.
  • 43 Cohen AB, Stevens MD, Miller EJ, Atkinson MA, Mullenbach G. Generation of the neutrophil-activating peptide-2 by cathepsin G and cathepsin G-treated human platelets. Am J Physiol. 1992; 263: L249-L256.
  • 44 Brandt E, Van Damme J, Flad HD. Neutrophils can generate their activator neutrophil-activating peptide 2 by proteolytic cleavage of platelet-derived connective tissue-activating peptide III. Cytokine. 1991; 3: 311-321.
  • 45 Evangelista V, Manarini S, Sideri R, Rotondo S, Martelli N, Piccoli A, Totani L, Piccardoni P, Vestweber D, de Gaetano G, Cerletti C. Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers protein-tyrosine phosphorylation-dependent CD11b/CD18 adhesion: role of PSGL-1 as a signaling molecule. Blood 1999; 93: 876-885.
  • 46 Niemetz J, Marcus AJ. The stimulatory effect of platelets and platelet membranes on the procoagulant activity of leukocytes. J Clin Invest. 1974; 54: 1437-1443.
  • 47 Tracy PB, Rohrbach MS, Mann KG. Functional prothrombinase complex assembly on isolated monocytes and lymphocytes. J Biol Chem. 1983; 258: 7264-7267.
  • 48 Tracy PB, Eide LL, Mann KG. Human prothrombinase complex assembly and function on isolated peripheral blood cell populations. J Biol Chem. 1985; 260: 2119-2124.
  • 49 Furie B, Furie BC. Leukocyte crosstalk at the vascular wall. Thromb Haemost. 1997; 78: 306-309.
  • 50 Weyrich AS, Elstad MR, McEver RP, McIntyre TM, Moore KL, Morrissey JH, Prescott SM, Zimmerman GA. Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest. 1996; 97: 1525-1534.
  • 51 McGee MP, Li LC. Functional difference between intrinsic and extrinsic coagulation pathways: kinetics of factor X activation on human monocytes and alveolar macrophages. J Biol Chem. 1991; 266: 8079-8085.
  • 52 Altieri DC, Morrissey JH, Edgington TS. Adhesive receptor Mac-1 coordinates the activation of factor X on stimulated cells of monocytic and myeloid differentiation: an alternative initiation of the coagulation protease cascade. Proc Natl Acad Sci USA. 1988; 85: 7462-7466.
  • 53 Simon DI, Xu H, Ortlepp S, Rogers C, Rao NK. 7E3 monoclonal antibody directed against the platelet glycoprotein IIb/IIIa cross-reacts with the leukocyte integrin Mac-1 and blocks adhesion to fibrinogen and ICAM-1. Arterioscler Thromb Vasc Biol. 1997; 17: 528-535.
  • 54 Plescia J, Conte MS, VanMeter G, Ambrosini G, Altieri DC. Molecular identification of the cross-reacting epitope on αMβ2 integrin I domain recognized by anti-αIIbβ3 monoclonal anti-body 7E3 and its involvement in leukocyte adherence. J Biol Chem. 1998; 273: 20372-20377.
  • 55 Li R, Rieu P, Griffith DL, Scott D, Amin AM. Two functional states of the CD11b A-domain: correlations with key features of two Mn2+-complexed crystal structures. J Cell Biol. 1998; 143: 1523-1534.
  • 56 Mickelson JK, Kleiman NS, Lakkis NM, Chow TW, Hughes BS, Smith CW. Chimeric 7E3 Fab (ReoPro) decreases detectable CD11b on neutrophils from patients undergoing coronary angioplasty. J Am Coll Cardiol. 1999; 33: 97-106.
  • 57 Meisel SR, Shapiro H, Radnay J, Neuman Y, Khaskia AR, Gruener N, Pauzner H, David D. Increased expression of neutrophil and monocyte adhesion molecules LFA-1 and Mac-1 and their ligand ICAM-1 and VLA-4 throughout the acute phase of myocardial infarction: possible implications for leukocyte aggregation and microvascular plugging. J Am Coll Cardiol. 1998; 31: 120-125.
  • 58 Ott I, Neumann FJ, Gawaz M, Schmitt M, Schomig A. Increased neutrophil-platelet adhesion in patients with unstable angina. Circulation. 1996; 94: 1239-1246.
  • 59 Mickelson JK, Lakkis NM, Villarreal-Levy G, Hughes BJ, Smith CW. Leukocyte activation with platelet adhesion after coronary angioplasty: a mechanism for recurrent disease?. J Am Coll Cardiol. 1996; 28: 345-353.
  • 60 Osterud B. A global view on the role of monocytes and platelets in atherogenesis. Thromb Res. 1997; 85: 1-22.
  • 61 Dong ZM, Wagner DD. Leukocyte-endothelium adhesion molecules in atherosclerosis. J Lab Clin Med. 1998; 132: 369-375.
  • 62 Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999; 340: 115-126.
  • 63 Bini A, Fenoglio JJJ, Mesa-Tejada R, Kudryk B, Kaplan KL. Identification and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation products in atherosclerosis: use of monoclonal antibodies. Arteriosclerosis. 1989; 9: 109-121.
  • 64 Poston RN, Haskard DO, Coucher JR, Gall NP, Johnson-Tidey RR. Expression of intercellular adhesion molecule-1 in atherosclerotic plaques. Am J Pathol. 1992; 140: 665-673.
  • 65 Rogers C, Edelman ER, Simon DI. A mAb to the β2-leukocyte integrin Mac-1 (CD11b/CD18) reduces intimal thickening after angioplasty or stent implantation in rabbits. Proc Natl Acad Sci USA. 1998; 95: 10134-10139.
  • 66 Simon DI, Chen Z, Seifert P, Edelman ER, Ballantyne CM, Rogers C. Markedly reduced neointimal thickening in Mac-1 (CD11b/CD18)-deficient mice after carotid artery dilation and endothelial denudation. Circulation. 1998; 98 (Suppl I): I-238.
  • 67 Merhi Y, Provost P, Guidoin R, Latour JG. Importance of platelets in neutrophil adhesion and vasoconstriction after deep carotid arterial injury by angioplasty in pigs. Arterioscler Thromb Vasc Biol. 1997; 17: 1185-1191.
  • 68 Merhi Y, Provost P, Chauvet P, Theoret JF, Phillips ML, Latour JG. Selectin blockade reduces neutrophil interaction with platelets at the site of deep arterial injury by angioplasty in pigs. Arterioscler Thromb Vasc Biol. 1999; 19: 372-377.
  • 69 Barron MK, Lake RS, Buda AJ, Tenaglia AN. Intimal hyperplasia after balloon injury is attenuated by blocking selectins. Circulation. 1997; 96: 3587-3592.
  • 70 Chopp M, Zhang RL, Chen H, Li Y, Jiang N, Rusche JR. Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke. 1994; 25: 869-875.
  • 71 Choudhri TF, Hoh BL, Zerwes HG, Prestigiacomo CJ, Kim SC, Connolly ES, Kottirsch G, Pinsky DJ. Reduced microvascular thrombosis and improved outcome in acute murine stroke by inhibiting GP IIb/IIIa receptor-mediated platelet aggregation. J Clin Invest. 1998; 102: 1301-1310.
  • 72 Jordan RE, Wagner CL, Mascelli M, Treacy G, Nedelman MA, Woody JN, Weisman HF, Coller BS. Preclinical development of c7E3 Fab; a mouse/human chimeric monoclonal antibody fragment that inhibits platelet function by blockade of GPIIb/IIIa receptors with observations on the immunogenicity of c7E3 Fab in humans. In: Horton MD MA. ed. Adhesion Receptors as Therapeutic Targets. CRC Press; Boca Raton: 1996: 281-305.
  • 73 Byzova TV, Rabbani R, D’Souza SE, Plow EF. Role of integrin αVβ3 in vascular biology. Thromb Haemost. 1998; 80: 726-734.
  • 74 Felding-Habermann B, Cheresh DA. Vitronectin and its receptors. Curr Opin Cell Biol. 1993; 5: 864-868.
  • 75 Conforti G, Dominguez-Jimenez C, Zanetti A, Gimbrone Jr. MA, Cremona O, Marchisio PC, Dejana E. Human endothelial cells express integrin receptors on the luminal aspect of their membrane. Blood 1992; 80: 437-446.
  • 76 Hoshiga M, Alpers CE, Smith LL, Giachelli CM, Schwartz SM. αVβ3 integrin expression in normal and atherosclerotic artery. Circ Res. 1995; 77: 1129-1135.
  • 77 Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin αVβ3 for angiogenesis. Science 1994; 264: 569-571.
  • 78 Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA. Antiintegrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest. 1995; 96: 1815-1822.
  • 79 Varner JA, Cheresh DA. Integrins and cancer. Curr Opin Cell Biol. 1996; 8: 724-730.
  • 80 Stouffer GA, Hu Z, Sajid M, Li H, Jin G, Nakada MT, Hanson SR, Runge MS. β3 integrins are upregulated after vascular injury and modulate thrombospondin- and thrombin-induced proliferation of cultured smooth muscle cells. Circulation. 1998; 97: 907-915.
  • 81 Srivatsa SS, Fitzpatrick LA, Tsao PW, Reilly TM, Holmes DR, Schwartz RS, Mousa SA. Selective αvβ3 integrin blockade potently limits neointimal hyperplasia and lumen stenosis following deep coronary arterial stent injury: Evidence for the functional importance of integrin αvβ3 and osteopontin expression during neointima formation. Cardiovasc Res. 1997; 36: 408-428.
  • 82 Preissner KT, Seiffert D. Role of vitronectin and its receptors in haemostasis and vascular remodeling. Thromb Res. 1998; 89: 1-21.
  • 83 Bennett JS, Chan C, Vilaire G, Mousa SA, DeGrado WF. Agonist-activated αvβ3 on platelets and lymphocytes binds to the matrix protein osteopontin. J Biol Chem. 1997; 272: 8137-8140.
  • 84 Byzova TV, Plow EF. Activation of αvβ3 on vascular cells controls recognition of prothrombin. J Cell Biol. 1998; 143: 2081-2092.
  • 85 Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler Stevenson WG, Quigley JP, Cheresh DA. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell. 1996; 85: 683-693.
  • 86 Tam SH, Sassoli PM, Jordan RE, Nakada MT. Abciximab (ReoPro, chimeric 7E3 Fab) demonstrates equivalent affinity and functional blockade of glycoprotein IIb/IIIa and αvβ3 integrins. Circulation. 1998; 98: 1085-1091.
  • 87 Zanetti A, Conforti G, Hess S, Martin-Padura I, Ghibaudi E, Preissner KT, Dejana E. Clustering of vitronectin and RGD peptides on microspheres leads to engagement of integrins on the luminal aspect of endothelial cell membrane. Blood 1994; 84: 1116-1123.
  • 88 Moliterno DJ, Califf RM, Aguirre FV, Anderson K, Sigmon KN, Weisman HF, Topol EJ. Effect of platelet glycoprotein IIb/IIIa integrin blockade on activated clotting time during percutaneous transluminal coronary angioplasty or directional atherectomy (the EPIC trial). Evaluation of c7E3 Fab in the Prevention of Ischemic Complications trial. Am J Cardiol. 1995; 75: 559-562.
  • 89 Ammar T, Scudder LE, Coller BS. In vitro effects of the platelet GPIIb/IIIa receptor antagonist c7E3 Fab on the activated clotting time. Circulation. 1997; 95: 614-617.
  • 90 Reverter JC, Beguin S, Kessels H, Kumar R, Hemker HC, Coller BS. Inhibition of platelet-mediated, tissue factor-induced, thrombin generation by the mouse/human chimeric 7E3 antibody: potential implications for the effect of c7E3 Fab treatment on acute thrombosis and “clinical restenosis”. J Clin Invest. 1996; 98: 863-874.
  • 91 Byzova TV, Plow EF. Networking in the hemostatic system. Integrin αIIβ3 binds prothrombin and influences its activation. J Biol Chem. 1997; 272: 27183-27188.
  • 92 Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994; 79: 1157-1164.
  • 93 Senger DR, Ledbetter SR, Claffey KP, Papadopoulos-Sergiou A, Peruzzi CA, Detmar M. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the αvβ3 integrin, osteopontin, and thrombin. Am J Pathol. 1996; 149: 293-305.
  • 94 Stromblad S, Becker JC, Yebra M, Brooks PC, Cheresh DA. Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin αvβ3 during angiogenesis. J Clin Invest. 1996; 98: 426-433.
  • 95 Varner JA, Nakada M, Jordan R, Coller BS. Inhibition of angiogenesis and tumor growth by murine 7E3, the parent antibody of c7E3 Fab (abciximab; ReoPro™). Angiogenesis. 1999 in press.
  • 96 Coller BS, Seligsohn U, Peretz H, Newman PJ. Glanzmann thrombasthenia: new insights from an historical perspective. Semin Hematol. 1994; 31: 301-311.
  • 97 Hodivala-Dilke KM, McHugh KP, Tsakiris DA, Rayburn H, Crowley D, Ullman-Cullere M, Ross P, Coller BS, Teitelbaum S, Hynes RO. β3-integrin-deficient mice: a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest. 1999; 103: 229-238.
  • 98 Hoppe C, Styles L, Vichinsky E. The natural history of sickle cell disease. Curr Opin Pediatr. 1998; 10: 49-52.
  • 99 Wick TM, Eckman JR. Molecular basis of sickle cell-endothelial cell interactions. Curr Opin Hematol. 1996; 3: 118-124.
  • 100 Kaul DK, Chen D, Zhan J. Adhesion of sickle cells to vascular endothelium is critically dependent on changes in density and shape of the cells. Blood 1994; 83: 3006-3017.
  • 101 Kaul DK, Fabry ME, Nagel RL. The pathophysiology of vascular obstruction in the sickle syndromes. Blood Rev. 1996; 10: 29-44.
  • 102 Kumar A, Eckman JR, Wick TM. Inhibition of plasma-mediated adherence of sickle erythrocytes to microvascular endothelium by conformationally constrained RGD- containing peptides. Am J Hematol. 1996; 53: 92-98.
  • 103 Kaul DK, Tsai HM, Nagel RL, Chen D. Platelet-activating factor enhances adhesion to sickle erythrocytes to vascular endothelium: the role of vascular integrin αvβ3 and von Willebrand factor. In: Beuzard Y, Lubin B, Rosa J. eds. Sickle Cell Disease and Thalassamias: New Trends in Therapy. Colloque INSERM; 1995: 497-500.
  • 104 Kaul DK, Tsai HM, Liu XD, Nakada MT, Nagel RL, Coller BS. Inhibition of sickle red cell adhesion to vascular endothelium by the monoclonal antibody 7E3 F(ab’)2 . Blood 1998; 92 (Suppl. 01) 497a.
  • 105 Wun T, Paglieroni T, Tablin F, Welborn J, Nelson K, Cheung A. Platelet activation and platelet-erythrocyte aggregates in patients with sickle cell anemia. J Lab Clin Med. 1997; 129: 507-516.
  • 106 Brittain HA, Eckman JR, Swerlick RA, Howard RJ, Wick TM. Thrombospondin from activated platelets promotes sickle erythrocyte adherence to human microvascular endothelium under physiologic flow: a potential role for platelet activation in sickle cell vaso-occlusion. Blood 1993; 81: 2137-2143.
  • 107 Le Breton H, Plow EF, Topol EJ. Role of platelets in restenosis after percutaneous coronary revascularization. J Am Coll Cardiol. 1996; 28: 1643-1651.
  • 108 Liaw L, Skinner MP, Raines EW, Ross R, Cheresh DA, Schwartz SM, Giachelli CM. The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins: role of αvβ3 in smooth muscle cell migration to osteopontin in vitro. J Clin Invest. 1995; 95: 713-724.
  • 109 Giachelli CM, Bae N, Almeida M, Denhardt DT, Alpers CE, Schwartz SM. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest. 1993; 92: 1686-1696.
  • 110 Choi ET, Engel L, Callow AD, Sun S, Trachtenberg J, Santoro S, Ryan US. Inhibition of neointimal hyperplasia by blocking αvβ3 integrin with a small peptide antagonist GpenGRGDSPCA. J Vasc Surg. 1994; 19: 125-134.
  • 111 Matsuno H, Stassen JM, Vermylen J, Deckmyn H. Inhibition of integrin function by a cyclic RGD-containing peptide prevents neointima formation. Circulation. 1994; 90: 2203-2206.
  • 112 Lundgren CH, Sawa H, Fujii S. Inhibition of neointimal hyperplasia after balloon injury by local delivery of a cyclic arginine-glycine-aspartic acid peptide targeting vitronectin receptor. J Am Coll Cardiol. 1995; 25: 83a.
  • 113 van der Zee R, Passeri J, Barry JJ, Cheresh DA, Isner JM. A neutralizing antibody to the αvβ3 integrin reduces neointimal thickening in a balloon-injured rabbit iliac artery. Circulation. 1996; 98 (Suppl): I-257.
  • 114 Slepian MJ, Massia SP, Dehdashti B, Fritz A, Whitesell L. β3-integrins rather than β1-integrins dominate integrin-matrix interactions involved in postinjury smooth muscle cell migration. Circulation. 1998; 97: 1818-1827.
  • 115 Coleman KR, Walter JJ, Braden GA, Sane DC. Vitaxin, a humanized monoclonal antibody to the vitronectin receptor, reduces neointimal hyperplasia following balloon injury in hypercholesterolemic rabbits. Circulation. 1998; 98: I-740.
  • 116 Deitch JS, Williams JK, Adams MR, Fly CA, Herrington DM, Jordan RE, Nakada MT, Jakubowski JA, Geary RL. Effects of β3-integrin blockade (c7E3) on the response to angioplasty and intra-arterial stenting in atherosclerotic nonhuman primates. Arterioscler Thromb Vasc Biol. 1998; 18: 1730-1737.
  • 117 Topol EJ, Califf RM, Weismann HF, Ellis SG, Tcheng JE, Worley S, Ivanhoe R, George BS, Fintel D, Weston M, Sigmon K, Anderson K, Lee KL, Willerson JT. on behalf of the EPIC Investigators. Randomized trial of coronary intervention with antibody against platelet IIb/IIIa integrin for reduction of clinical restenosis: results at six months. Lancet. 1994; 343: 881-886.
  • 118 Simoons ML, de Boer MJ, van den Brand MJ, van Mittenburg AJ, Hoorntje JC, Hegndrickx GR, van der Wieken LR, de Bono D, Rutsch W, Schaible TF, Weisman HF, Klootwijk P, Nijssen K, Stibbe J, de Feyter PJ. the European Cooperative study group. Randomized trial of a GPIIb/IIIa platelet receptor blocker in refractory unstable angina. Circulation. 1994; 89: 596-603.
  • 119 The EPILOG Investigators. Platelet glycoprotein IIb/IIIa receptor blockade and low-dose heparin during percutaneous coronary revascularization. N Engl J Med. 1997; 336: 1689-1696.
  • 120 The EPISTENT Investigators. Randomised placebo-controlled and balloon-angioplasty-controlled trial to assess safety of coronary stenting with use of platelet glycoprotein-IIb/IIIa blockade. Lancet. 1998; 352: 87-92.
  • 121 Lincoff AM, Tcheng JE, Cabot CF, Califf RM, Booth JE, Sapp Sh, Topol EJ. Marked benefit in diabetic patients treated with stent and abciximab combination: 6 month outcome of the EPISTENT trial. J Am Col Cardiol. 1999; 33: 34A
  • 122 Aronson D, Bloomgarden Z, Rayfield EJ. Potential mechanisms promoting restenosis in diabetic patients. J Am Coll Cardiol. 1996; 27: 528-535.
  • 123 Schwartz SM. Perspectives series: cell adhesion in vascular biology. Smooth muscle migration in atherosclerosis and restenosis. J Clin Invest. 1997; 99: 2814-2816.