Thromb Haemost 1999; 82(02): 283-290
DOI: 10.1055/s-0037-1615844
Research Article
Schattauer GmbH

Structure and Function of Fibrinogen: Insights from Dysfibrinogens

Michio Matsuda
1   Institute of Hematology, Jichi Medical School, Tochigi-Ken, JAPAN
,
Teruko Sugo
1   Institute of Hematology, Jichi Medical School, Tochigi-Ken, JAPAN
,
Nobuhiko Yoshida
1   Institute of Hematology, Jichi Medical School, Tochigi-Ken, JAPAN
,
Shigeharu Terukina
1   Institute of Hematology, Jichi Medical School, Tochigi-Ken, JAPAN
,
Kensuke Yamazumi
1   Institute of Hematology, Jichi Medical School, Tochigi-Ken, JAPAN
,
Kazuki Niwa
1   Institute of Hematology, Jichi Medical School, Tochigi-Ken, JAPAN
,
Hisato Maekawa
1   Institute of Hematology, Jichi Medical School, Tochigi-Ken, JAPAN
› Author Affiliations
Further Information

Publication History

Publication Date:
09 December 2017 (online)

Summary

The structure-function relationships of dysfibrinogens and their clinical implications are discussed on the basis of the data provided from representative molecules.

 
  • References

  • 1 Doolittle RF, Bouma III H, Cottrell BA, Strong D, Watt KWK. The covalent structure of human fibrinogen. In: Bing DH. ed. The Chemistry and Physiology of the Human Plasma Proteins. New York: Pergamon Press; 1979: 77-95.
  • 2 Doolittle RF. Fibrinogen and fibrin. In: Haemostasis and Thrombosis. 2nd Edn.. Bloom AL, Thomas DP. eds. Edinburgh: Churchill Livingstone; 1981: 163-191.
  • 3 Weisel JW. Lateral aggregation and the role of the two pairs of fibrinopeptides. Biophys J. 1986; 50: 1079-1093.
  • 4 Weisel JW, Veklich Y, Gorkun O. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots. J Mol Biol. 1993; 232: 285-297.
  • 5 Gorkun OV, Veklich YI, Medved LV, Henschen AH, Weisel JW. Role of the aC domains of fibrin in clot formation. Biochemistry. 1994; 33: 6986-6997.
  • 6 Veklich YI, Gorkun OV, Medved LV, Nieuwenhuizen W, Weisel JW. Carboxyl-terminal portions of the a chains of fibrinogen and fibrin. Localization by electron microscopy and the effects of isolated αC fragments on polymerization. J Biol Chem. 1993; 268: 13577-13585.
  • 7 Mosesson MW, DiOrio JP, Siebenlist KR, Wall JS, Hainfeld JF. Evidence for a second type of fibrin branch point in fibrin polymer networks, the trimolecular branch junction. Blood 1993; 82: 1517-1521.
  • 8 Baradet TC, Haselgrove JC, Weisel JW. Three-dimensional reconstruction of fibrin clot networks from sterotypic intermediate voltage electron microscopic images and analysis of branching. Biophys J. 1995; 68: 1551-1560.
  • 9 Yee VC, Pratt KP, Côté HCF, Le Trong I, Chung DW, Davie EW, Stenkamp RE, Teller DC. Crystal structure of a 30 kDa C-terminal fragment from the γ chain of human fibrinogen. Structure. 1997; 5: 125-138.
  • 10 Pratt KP, Côté HCF, Chung DW, Stenkamp RE, Davie EW. The fibrin polymerization pocket: three-dimensional structure of a 30 kDA C-terminal γ chain fragment complexed with the peptide Gly-Pro-Arg-Pro. Proc Natl Acad Sci USA. 1997; 94: 7176-7181.
  • 11 Spraggon G, Everse S, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 1997; 389: 455-462.
  • 12 Côté HCF, Pratt KP, Davie EW, Chung DW. The polymerization pocket ‘a’ within the carboxyl-terminal region of the γ chain of human fibrinogen is adjacent to but independent from the calcium-binding site. J Biol Chem. 1997; 272: 23792-23798.
  • 13 Everse SJ, Spraggon G, Doolittle RF. A three dimensional consideration of variant human fibrinogens. Thromb Haemost. 1998; 80: 1-9.
  • 14 Southan C. The elucidation of molecular defects in congenital dysfibrinogenemia. In: Fibrinogen, Fibrin Stabilisation, and Fibrinolysis. Francis JL. ed. Chichester: Ellis Horwood; 1988: 100-127.
  • 15 Niwa K, Yaginuma A, Nakanishi M, Wada Y, Sugo T, Asakura S, Watanabe N, Matsuda M. Fibrinogen Mitaka II : a hereditary dysfibrinogen with defective thrombin binding caused by an Aα Glu-11 to Gly substitution. Blood 1993; 82: 3658-3663.
  • 16 Martin PD, Robertson W, Turk D, Huber R, Bode W, Edwards BFP. The structure of residues 7-16 of the Aα-chain of human fibrinogen bound to bovine thrombin at 2.3-Å resolution. J Biol Chem. 1992; 267: 7911-7920.
  • 17 Stubb MT, Aschkinat H, Mayr I, Huber R, Angliker H, Stone SR, Bode W. The interaction of thrombin with fibrinogen. A structural basis for its specificity. Eur J Biochem. 1992; 206: 187-195.
  • 18 Zheng Z, Ashton RW, Ni F, Scheraga HA. Thrombin hydrolysis of an N-terminal peptide from fibrinogen Lille : Kinetic and NMR studies. Biochemistry. 1992; 31: 4426-4431.
  • 19 Higgins DL, Shafer JA. Fibrinogen Petoskey, a dysfibrinogenemia characterized by replacement of Arg-Aα16 by a histydyl residue. Evidence for thrombin-catalyzed hydrolysis at a histidyl residue. J Biol Chem. 1981; 256: 12013-12017.
  • 20 Henschen A, Kehl M, Southan S. Genetically abnormal fibrinogens: strategies for structure elucidation, including fibrinopeptide analysis. In: Variants of Human Fibrinogen. Beck EA, Furlan M. eds. Bern: Hans Huber Verlag; 1984: 273-320.
  • 21 Matsuda M. Molecular abnormalities of fibrinogen - the present status of structure elucidation. In: Matsuda M, Iwanaga S, Takada A, Henschen A.. (eds). Fibrinogen 4. Current Basis and Clinical Aspects. Amsterdam: Excerpta Medica; 1990: 139-152.
  • 22 Galanakis D. Inherited dysfibrinogenemia: emerging abnormal structure associations with pathologic and nonpathologic dysfunctions. Semin Thromb Hemostasis. 1993; 19: 386-395.
  • 23 Matsuda M. The structure-function relationship of hereditary dysfibrinogens. Intern J Hematol. 1996; 64: 167-179.
  • 24 Ebert RF. ed Index of Variant Human Fibrinogens. Boca Raton: CRC Press; 1994
  • 25 Kaudewitz H, Henschen A, Soria C, Soria J, Bertrand O, Heaton D. The molecular defect of the genetically abnormal fibrinogen Christchurch II. In: Fibrinogen and Its Derivatives. Müller-Berghaus G, Scheefers-Borchel V, Selmayr E, Henschen A. eds. Amsterdam: Elsevier; 1986: 31-36.
  • 26 Kudryk BJ, Collen D, Woods KR, Blombäck B. Evidence for localization of polymerization sites in fibrinogen. J Biol Chem. 1974; 249: 3322-3325.
  • 27 Olexa SA, Budzynski AZ. Evidence for four different polymerization sites involved in human fibrin formation. Proc Natl Acad Sci USA. 1980; 77: 1374-1378.
  • 28 Mosesson MW, Siebenlist KR, DiOlio JP, Matsuda M, Hainfeld JF, Wall JS. The role of fibrinogen D domain intermolecular association sites in the polymerization of fibrin and fibrinogen Tokyo II (γ 275 Arg → Cys). J Clin Invest. 1995; 96: 1053-1058.
  • 29 Laudano AP, Doolittle RF. Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers. Proc Natl Acad Sci USA. 1978; 75: 3085-3089.
  • 30 Laudano AP, Doolittle RF. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Structural requirements, number of binding sites, and species differences. Biochemistry. 1980; 19: 1013-1019.
  • 31 Wada Y, Niwa K, Maekawa H, Asakura S, Sugo T, Nakanishi M, Auerswald G, Popp M, Matsuda M. A new type of congenital dysfibrinogen, fibrinogen Bremen, with an Aα Gly-17 to Val substitution associated with hemorrhagic diathesis and delayed wound healing. Thromb Haemost. 1993; 70: 397-403.
  • 32 Yoshida N, Okuma M, Hirata H, Matsuda M, Yamazumi K, Asakura S. Fibrinogen Kyoto II, a new congenitally abnormal molecule, characterized by the replacement of Aα proline-18 by leucine. Blood 1991; 78: 149-153.
  • 33 Uotani C, Miyata T, Kumabashiri I, Asakura H, Saito M, Matsuda T, Kajiyama S, Iwanaga S. Fibrinogen Kanazawa: a congenital dysfibrinogenemia with delayed polymerization having a replacement of proline-18 by leucine in the Aα-chain. Blood Coag Fibrinolysis. 1991; 2: 413-2417.
  • 34 Blombäck M, Blombäck B, Mammen EF, Prasad AS. Fibrinogen Detroit-A molecular defect in the N-terminal disulphide knot of human fibrinogen?. Nature 1968; 218: 134-137.
  • 35 Hessel B, Stenbjerg S, Dyr J, Kudryk B, Therkildsen L, Blombäck B. Fibrinogen Aarhus - a new case of dysfibrinogenemia. Thromb Res. 1986; 42: 21-37.
  • 36 Dempfle CEH, Henschen A. Fibrinogen Mannheim I-identification of an Aα 19 Arg → Gly substitution in dysfibrinogenemia associated with bleeding tendency. In: Fibrinogen 4. Current Basic and Clinical Aspects. Matsuda M, Iwanaga S, Takada A, Henschen A. eds. Amsterdam: Elsevier Science Publ; 1990: 159-166.
  • 37 Yamaguchi S, Sugo T, Hashimoto Y, Kimura K, Okajima K, Matsuda M. Fibrinogen Kumamoto with an Aα Arg-19 to Gly substitution has reduced affinity for thrombin: Possible relevance to thrombosis. Jpn J Thromb Hemost. 1997; 8: 382-392.
  • 38 Miyata T, Furukawa K, Iwanaga S, Takamatsu J, Saito H. Fibrinogen Nagoya, a replacement of glutamine-329 by arginine in the γ-chain that impairs the polymerization of fibrin monomer. J Biochem. 1989; 105: 10-14.
  • 39 Reber P, Furlan M, Rupp C, Kehl M, Henschen A, Mannucci P, Beck E. Characterization of fibrinogen Milano I: amino acid exchange γ 330 Asp → Val impairs fibrin polymerization. Blood 1986; 67: 1751-1756.
  • 40 Terukina S, Yamazumi K, Okamoto K, Yamashita H, Ito Y, Matsuda M. Fibrinogen Kyoto III : A congenital dysfibrinogen with a γ aspartic acid-330 to tyrosine substitution manifesting impaired fibrin monomer polymerization. Blood 1989; 74: 2681-2687.
  • 41 Okumura N, Furihata K, Terasawa F, Nakagoshi R, Ueno I, Katsuyama T. Fibrinogen Matsumoto I: a γ 364 Asp → His (GATÆ CAT) substitution associated with defective fibrin polymerization. Thromb Haemost. 1996; 75: 887-891.
  • 42 Bentolila S, Samama MM, Conard J, Horellou MH, French P. Association of dysfibrinogenemia and thrombosis. Apropos of a family (fibrinogen Melun) and review of the literature (in French). Annalen Med Interne. 1995; 146: 575-580.
  • 43 Côté HCF, Lord ST, Pratt KP. γ-Chain dysfibrinogenemias: Molecular structure-function relationships of naturally occurring mutations in the γ chain of human fibrinogen. Blood 1998; 92: 2195-2212.
  • 44 Yoshida N, Hirata H, Morigami Y, Imaoka S, Matsuda M, Yamazumi K, Asakura S. Characterization of an abnormal fibrinogen Osaka V with the replacement of γ-arginine 375 by glycine. J Biol Chem. 1992; 267: 2753-2759.
  • 45 Steinmann C, Reber P, Jungo M, Lämmle B, Heinemann G, Wermuth B, Furlan M. Fibrinogen Bern I: Subsitution γ 337 Asn → Lys is responsible for defective fibrin monomer polymerization. Blood 1993; 82: 2104-2108.
  • 46 Steinmann C, Bögli C, Jungo M, Lämmle B, Heinemann G, Wermuth B, Redaelli R, Baudo F, Furlan M. A new substitution, γ 358 Ser → Cys, in fibrinogen Milano VII causes defective fibrin polymerization. Blood 1994; 84: 1874-1880
  • 47 Matsuda M, Nakamikawa C, Baba M, Morimoto K. “Fibrinogen Tokyo II”: An abnormal fibrinogen with an impaired polymerization site on the aligned DD domain of fibrin molecules. J Clin Invest. 1983; 72: 1034-1041.
  • 48 Terukina S, Matsuda M, Hirata H, Takeda Y, Miyata T, Takao T, Shimonishi Y. Substitution of γ Arg-275 by Cys in an abnormal fibrinogen, “fibrinogen Osaka II”. Evidence for a unique solitary cystine structure at the mutation site. J Biol Chem. 1988; 263: 13579-13587.
  • 49 Reber P, Furlan M, Henschen A, Kaudewitz H, Barbui T, Hilgard P, Nenci GG, Berrettini M, Beck EA. Three abnormal fibrinogen variants with the same amino acid substitution (γ 275 Arg → His): Fibrinogens Bergamo II, Essen and Perugia. Thromb Haemost. 1986; 56: 401-406.
  • 50 Yamazumi K, Terukina S, Onohara S, Matsuda M. Normal plasmic cleavage of the γ chain variant of “fibrinogen Saga” with an Arg-275 to His substitution. Thromb Haemost. 1988; 60: 476-480.
  • 51 Mimuro J, Kawata Y, Niwa K, Muramatsu S, Madoiwa S, Hirata H, Takano H, Sugo T, Sakata Y, Sugimoto K, Nose K, Matsuda M. A new type of Ser substitution for γ Arg-275 in fibrinogen Kamogawa I characterized by impaired fibrin assembly. Thromb Haemost. 1999; 81: 940-944
  • 52 Fellowes AP, Brennan SO, Ridgway HJ, Heaton DC, George PM. Electrospray ionization mass spectrometry identification of fibrinogen Banks Peninsula (γ 280 Tyr → Cys): a new variant with defective polymerization. Brit J Haemat. 1998; 101: 24-31.
  • 53 Niwa K, Takebe M, Sugo T, Kawata Y, Mimuro J, Asakura S, Sakata Y, Mizushima J, Maeda A, Endo H, Matsuda M. A γ Gly-268 to Glu substitution is responsible for impaired fibrin assembly in a homozygous dysfibrinogen Kurashiki I. Blood 1996; 87: 4686-4694.
  • 54 Yoshida N, Terukina S, Okuma M, Moroi M, Aoki N, Matsuda M. Characterization of an apparently lower molecular weight g-chain variant in fibrinogen Kyoto I. The replacement of γ Asn-308 by Lys which caused an accelerated cleavage of fragment D1 by plasmin and the generation of a new plasmin cleavage site. J Biol Chem. 1988; 263: 13848-13856.
  • 55 Bantia S, Bell WR, Dang CV. Polymerization defect of fibrinogen Baltimore III due to a gamma Asn-308 → Ile mutation. Blood 1990; 75: 1659-1663.
  • 56 Yamazumi K, Shimura K, Terukina S, Takahashi N, Matsuda M. A γ methionine-310 to threonine substitution and consequent N-glycosylation at γ asparagine-308 identified in a congenital dysfibrinogenemia associated with posttraumatic bleeding, fibrinogen Asahi. J Clin Invest. 1989; 83: 1590-1597.
  • 57 Yamazumi K, Shimura K, Maekawa H, Muramatsu S, Terukina S, Matsuda M. Delayed intermolecular γ chain cross-linking by factor XIIIa in fibrinogen Asahi characterized by a γ Met-310 to Thr substitution with an N-glycosylated γ Asn-308. Blood Coagul Fibrinolysis. 1990; 1: 557-559.
  • 58 Koopman J, Haverkate F, Grimbergen J, Egbring R, Lord ST. Fibrinogen Marburg: a homozygous case of dysfibrinogenemia, lacking amino acids Aα 461-610 (Lys 461 AAA → Stop TAA). Blood 1992; 80: 1972-1979.
  • 59 Sugo T, Nakamikawa C, Takebe M, Kohno I, Egbring R, Matsuda M. Factor XIIIa-cross-linking of the Marburg Fibrin : Formation of αm € γn-heteromultimers and the α-chain-linked albumin € γ complex, and disturbed protofibril assembly resulting in acquisition of plasmin-resistance relevant to thrombophilia. Blood 1998; 91: 3282-3288.
  • 60 Koopman J, Haverkate F, Grimbergen J, Lord ST, Mosesson MW, DiOrio JP, Siebenlist KS, Legrand C, Soria J, Soria C, Caen JR. Molecular basis for fibrinogen Dusart (Aα 554 Arg → Cys) and its association with abnormal fibrin polymerization and thrombophilia. J Clin Invest. 1993; 91: 1637-1643.
  • 61 Wada Y, Lord ST. A correlation between thrombotic disease and a specific fibrinogen abnormality (Aα 554 Arg → Cys) in two unrelated kindred, Dusart and Chapel Hill III. Blood 1994; 84: 3709-3714.
  • 62 Maekawa H, Yamazumi K, Muramatsu S, Kaneko M, Hirata H, Takahashi N, de Bosch NR, Carvajal Z, Ojeda A, Arocha-Piñango CL, Matsuda M. An Aα Ser-434 to N-glycosylated Asn substitution in a dysfibrinogen, fibrinogen Caracas II, characterized by impaired fibrin gel formation. J Biol Chem. 1991; 266: 11575-11581.
  • 63 Collet JP, Woodhead JL, Soria J, Soria C, Mirshahi M, Caen JP, Weisel JW. Fibrinogen Dusart : Electron microscopy of molecules, fibers and clots, and viscoelastic properties of clots. Biophys J. 1996; 70: 500-510.
  • 64 Mosesson MW, Siebenlist KR, Hainfeld JF, Wall JS, Soria J, Soria C, Caen JP. The relationship between the fibrinogen D domain self-association/cross-linking site (γXL) and the fibrinogen Dusart abnormality (Aα R554C-albumin). Clues to thrombophilia in the “Dusart syndrome”. JClin Invest. 1996; 97: 2342-2350.
  • 65 Woodhead JL, Nagaswami C, Matsuda M, Arocha-Piñango CL, Weisel JW. The ultrastructure of fibrinogen Caracas II molecules, fibers and clots. J Biol Chem. 1996; 271: 4946-4953.
  • 66 Maekawa H, Yamazumi K, Muramatsu S, Kaneko M, Hirata H, Takahashi N, Arocha-Piñango CL, Rodriguez S, Nagy H, Perez-Requejo JL, Matsuda M. Fibrinogen Lima : a homozygous dysfibrinogen with an Aα-arginine-141 to serine substitution associated with extra N-glycosylation at Aα-asparagine-139. J Clin Invest. 1992; 90: 67-76.
  • 67 Ridgway HJ, Brennan SO, Loreth RM, George PM. Fibrinogen Kaiserslautern (γ 380 Lys to Asn): A new glycosylated fibrinogen variant with delayed polymerization. Br J Haematol. 1997; 99: 562-569.
  • 68 Marguerie G, Chagniel G, Suscillion M. The binding of calcium to bovine fibrinogen. Biochim Biophys Acta. 1977; 490: 94-103.
  • 69 Haverkate F, Timan G. Protective effect of calcium in the plasmin degradation of fibrinogen and fibrin fragments. Thromb Res. 1977; 10: 803-812.
  • 70 Dang CV, Ebert RF, Bell WR. Localization of a fibrinogen calcium binding site between γ-subunit positions 311 and 336 by terbium fluorescence. J Biol Chem. 1985; 260: 9713-9719.
  • 71 Liu CY, Nossel HL, Kaplan KL. The binding of thrombin to fibrin. J Biol Chem. 1979; 254: 10421-10425.
  • 72 Havarkate F, Koopman J, Kluft C, D’Angelo A, Cattaneo M, Mannucci PM. Fibrinogen Milano II : a congenital dysfibrinogenemia associated with juvenile arterial and venous thrombosis. Thromb Haemost. 1986; 55: 131-135.
  • 73 Rijken DC, Hoylaerts M, Collen D. Fibrinolytic properties of one-chain and two-chain human extrinsic(tissue-type) plasminogen activator. J Biol Chem. 1982; 257: 2920-2925.
  • 74 Nieuwenhuizen W, Vermond A, Voskuilen M, Traas DW, Verheijen JH. Identification of a site in fibrin(ogen) which is involved in the acceleration of plasminogen activation by tissue-type plasminogen activator. Biochim Biphys Acta. 1983; 748: 86-92.
  • 75 Lucas MA, Fretto LJ, McKee PA. The binding of human plasminogen to fibrin and fibrinogen. J Biol Chem. 1983; 258: 4249-4256.
  • 76 Váradi A, Patthy L. Location of plasminogen binding sites in fibrin(ogen). Biochemistry. 1983; 22: 2440-2446.
  • 77 Hawiger J, Timmons S, Kloczewiak M, Strong DD, Doolittle RF. Gamma and alpha chains of human fibrinogen possess sites reactive with human platelet receptors. Proc Natl Acad Sci USA. 1982; 79: 2068-2071.
  • 78 Strong DD, Laudano AP, Hawiger J, Doolittle RF. Isolation, characterization, and synthesis of peptides from human fibrinogen that block the staphylococcal clumping reaction and construction of a synthetic clumping principle. Biochemistry. 1982; 21: 1414-1420.
  • 79 Dejana E, Languino LR, Polentarutti N, Balconi G, Ryckewaert JJ, Larrieu MJ, Donati EB, Mantovani A, Marguerie G. Interaction between fibrinogen and cultured endothelial cells. Induction of migration and specific binding. J Clin Invest. 1985; 75: 11-18.
  • 80 Gonda SR, Shainoff JR. Adsorptive endocytosis of fibrin monomer by macrophages: Evidence of a receptor for the amino terminus of the fibrin α chain. Proc Natl Acad Sci USA. 1982; 79: 4565-4569.
  • 81 Koopman J, Haverkate F, Briët E, Lord ST. A congenitally abnormal fibrinogen (Vlissingen) with a 6-base deletion in the γ chain gene, causing defective calcium binding and impaired fibrin polymerization. J Biol Chem. 1991; 266: 13456-13461.
  • 82 Liu CY, Koehn JA, Morgan FJ. Characterization of fibrinogen New York I. A dysfunctional fibrinogen with a deletion of Bb (9-72) corresponding exactly to exon 2 of the gene. J Biol Chem. 1985; 260: 4390-4396.
  • 83 Koopman J, Haverkate F, Lord ST, Grimbergen J, Mannucci PM. Molecular basis of fibrinogen Naples associated with defective thrombin binding and thrombophilia. Homozygous substitution of Bb 68 Ala → Thr. J Clin Invest. 1992; 90: 238-244.
  • 84 Voskuilen M, Vermond A, Veeneman GH, van Boom JH, Klasen EA, Zegers ND, Nieuwenhuizen W. Fibrinogen lysine residue Aa 157 plays a crucial role in the fibrin-induced acceleration of plasminogen activation, catalyzed by tissue-type plasminogen activator. J Biol Chem. 1987; 262: 5944-5946.
  • 85 Yonekawa O, Voskuilen M, Nieuwenhuizen W. Localization in the fibrinogen γ-chain of a new site that is involved in the acceleration of the tissue-type plasminogen activator-catalyzed activation of plasminogen. Biochem J. 1992; 283: 187-191.
  • 86 Soria J, Soria C, Caen JP. A new type of congenital dysfibrinogenemia with defective fibrin lysis — Dusard syndrome : possible relation to thrombosis. Brit J Haematol. 1983; 53: 575-586.
  • 87 Suenson E, Bjerrum P, Holm A, Lind B, Meldal M, Selmer J, Petersen C. The role of fragment X polymers in the fibrin enhancement of tissue plasminogen activator-catalyzed plasmin formation. J Biol Chem. 1990; 265: 22228-22237.
  • 88 Lijnen HR, Soria J, Soria C, Collen D, Caen JP. Dysfibrinogenemia (Fibrinogen Dusart) associated with impaired fibrin-enhanced plasminogen activation. Thromb Haemost. (Stuttgart) 1984; 51: 108-109.
  • 89 Carrell N, Gabriel DA, Blatt PM, Carr ME, McDonagh J. Heteditary dysfibrinogenemia in a patient with thrombotic disease. Blood 1983; 62: 439-447.
  • 90 Asakura S, Niwa K, Tomozawa T, Jin Y-M, Madoiwa S, Sakata Y, Sakai T, Funayama H, Soe G, Forgerty F, Hirata H, Matsuda M. Fibroblasts spread on immobilized fibrin monomer by mobilizing a b1-class integrin, together with a vitronectin receptor αvb3 on their surface. J Biol Chem. 1997; 272: 8824-8829.