Synthesis 2019; 51(10): 2116-2121
DOI: 10.1055/s-0037-1612122
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Characterization of Enantiopure Tribenzotriquinacene Dimers Bearing a Platinum-Diacetylene Unit

Wen-Rong Xu*
a   Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and College of Materials and Chemical Engineering, Hainan University, Haikou 570228, P. R. of China   eMail: xuwr2016@hainu.edu.cn
,
Xin-Rui Wang
a   Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and College of Materials and Chemical Engineering, Hainan University, Haikou 570228, P. R. of China   eMail: xuwr2016@hainu.edu.cn
,
Hak-Fun Chow
b   Department of Chemistry, State Key Laboratory of Synthetic Chemistry and The Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
,
Dietmar Kuck
c   Department of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Bielefeld, 33615, Germany
› Institutsangaben
We are grateful for the financial support of this work by Natural Science Foundation of Hainan Province (Grant No. 217008) and Hainan University (Scientific Research Start-up Foundation, Grant No. kyqd1635)­.
Weitere Informationen

Publikationsverlauf

Received: 28. Oktober 2018

Accepted after revision: 08. Januar 2019

Publikationsdatum:
19. Februar 2019 (online)


Abstract

A pair of enantiomerically pure metallodimers containing two deeply concave tribenzotriquinacene (TBTQ) units linked by a platinum-diacetylene unit were synthesized. Such linear metal-centered TBTQ dimers are considered as edges of metallosquares and metallocubes that bear four or eight mutually syn-oriented TBTQ bowls at their tips, respectively. The structures of the metallodimers were characterized by 1H, 13C and 31P NMR spectroscopy, ESI mass spectrometry, and circular dichroism. The single X-ray crystal structure of (+)-enantiomer confirmed the absolute configuration of the metallodimers and revealed an edge (tip-to-tip) length of 18.456 Å and an approximated syn-orientation of the two TBTQ bowls in the solid state.

Supporting Information

 
  • References

  • 1 García-Simón C, Costas M, Ribas X. Chem. Soc. Rev. 2016; 45: 40
  • 2 Fermi A, Bergamini G, Roy M, Gingras M, Ceroni P. J. Am. Chem. Soc. 2014;  136: 6395
  • 3 Schulze M, Kunz V, Frischmann PD, Würthner F. Nat. Chem. 2016; 8: 576
  • 4 Qin H, Zhao C, Sun Y, Ren J, Qu X. J. Am. Chem. Soc. 2017; 139: 16201
  • 5 Chakrabarty R, Mukherjee PS, Stang PJ. Chem. Rev. 2011; 111: 6810
    • 7a Laramée-Milette B, Nastasi F, Puntoriero F, Campagna S, Hanan GS. Chem. Eur. J. 2017; 23: 16497
    • 7b Roche S, Haslam C, Heath SL, Thomas JA. Chem. Commun. 1998; 1681
    • 7c Lee SJ, Lin W. J. Am. Chem. Soc. 2002; 124: 4554
    • 7d Browne C, Brenet S, Clegg JK, Nitschke JR. Angew. Chem. Int. Ed. 2013; 52: 1944
    • 8a Fowler JM, Thorp-Greenwood FL, Warriner SL, Willans CE, Hardie MJ. Chem. Commun. 2016; 52: 8699
    • 8b Wang C, Hao X.-Q, Wang M, Guo C, Xu B, Tan EN, Zhang Y.-Y, Yu Y, Li Z.-Y, Yang H.-B, Song M.-P, Li X. Chem. Sci. 2014; 5: 1221
    • 8c Milic T, Garno JC, Batteas JD, Smeureanu G, Drain CM. Langmuir 2004; 20: 3974
    • 9a Strübe J, Neumann B, Stammler H.-G, Kuck D. Chem. Eur. J. 2009; 15: 2256
    • 9b Klotzbach S, Scherpf T, Beuerle F. Chem. Commun. 2014; 50: 12454
    • 9c Klotzbach S, Beuerle F. Angew. Chem. Int. Ed. 2015; 54: 10356
    • 9d Beuerle F, Gole B. Angew. Chem. Int. Ed. 2018; 57: 4850
    • 9e Beaudoin D, Rominger F, Mastalerz M. Angew. Chem. Int. Ed. 2016; 55: 15599
  • 10 Xu W.-R, Xia G.-J, Chow H.-F, Cao X.-P, Kuck D. Chem. Eur. J. 2015; 21: 12011
    • 11a Tellenbröker J, Kuck D. Beilstein J. Org. Chem. 2011; 7: 329
    • 11b Mughal EU, Neumann B, Stammler H.-G, Kuck D. Eur. J. Org. Chem. 2014; 7469
    • 11c Markopoulos G, Henneicke L, Shen J, Okamoto Y, Jones PG, Hopf H. Angew. Chem. Int. Ed. 2012; 51: 12884
    • 11d Wang T, Zhang Y.-F, Hou Q.-Q, Xu W.-R, Cao X.-P, Chow H.-F, Kuck D. J. Org. Chem. 2013; 78: 1062
    • 11e Xu W.-R, Chow H.-F, Cao X.-P, Kuck D. J. Org. Chem. 2014; 79: 9335
    • 11f Xu W.-R, Chow H.-F, Cao X.-P, Kuck D. J. Org. Chem. 2015; 80: 4221
    • 11g Beaudoin D, Rominger F, Mastalerz M. Eur. J. Org. Chem. 2016; 4470
    • 11h Wagner P, Rominger F, Mastalerz M. Angew. Chem. Int. Ed. 2018; 57: 11321
  • 12 Yergey JA. Int. J. Mass Spectrom. Ion Phys. 1983; 52: 337
  • 13 CCDC 1862894 [(+)-2] and 1862895 [(+)-3] contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 14 Wong W.-Y, Wong W.-K, Raithby PR. J. Chem. Soc., Dalton Trans. 1998; 2761
  • 15 Goudreault T, He Z, Guo Y, Ho C.-L, Zhan H, Wang Q, Ho KY.-F, Wong K.-L, Fortin D, Yao B, Xie Z, Wang L, Kwok W.-M, Harvey PD, Wong W.-Y. Macromolecules 2010; 43: 7936
    • 16a Li Z.-M, Lfi Y.-W, Cao X.-P, Chow H.-F, Kuck D. J. Org. Chem. 2018; 83: 3433
    • 16b Rommelmann P, Greschner W, Ihrig S, Neumann B, Stammler H.-G, Gröger H, Kuck D. Eur. J. Org. Chem. 2018; 3891
  • 17 Sheldrick GM. SADABS: Program for Empirical Absorption Correction of Area Detector Data. University of Gottingen; Germany: 1996
  • 18 Sheldrick GM. SHELXL Version-2018/3: Program for Crystal Structure Solution and Refinement. University of Gottingen; Germany: 2018