Synlett 2019; 30(09): 1067-1072
DOI: 10.1055/s-0037-1611782
letter
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Arylation of 3-Carboxamide Oxindoles with Quinone Monoimines and Synthesis of Chiral Spirooxindole-benzofuranones

Hui Chen
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: xmzhang@cioc.ac.cn
b   University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China
,
Hui Liu
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: xmzhang@cioc.ac.cn
b   University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China
,
Si-Han Zhao
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: xmzhang@cioc.ac.cn
b   University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China
,
Shao-Bing Cheng
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: xmzhang@cioc.ac.cn
b   University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China
,
Xiao-Ying Xu
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: xmzhang@cioc.ac.cn
,
Wei-Cheng Yuan
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: xmzhang@cioc.ac.cn
,
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: xmzhang@cioc.ac.cn
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (21672208).
Further Information

Publication History

Received: 08 February 2019

Accepted after revision: 17 March 2019

Publication Date:
02 April 2019 (online)


Abstract

A highly enantioselective arylation of 3-carboxamide oxoindoles with quinone monoimines is described. Various 3-aryl-3-carboxamide oxindoles with an all-carbon quaternary center were obtained in moderate to good yields (up to 99%) with moderate to good enantioselectivities (up to 98%) in the presence of a bifunctional thiourea-tertiary amine catalyst. The absolute configuration of one product was determined by an X-ray crystal structural analysis and the absolute configurations of the other products can be assigned by analogy. Moreover, several chiral spirooxindole-benzofuranones were synthesized from the 3-aryl-3-carboxamide oxindoles in moderate yields with moderate to good enantioselectivities.

Supporting Information

 
  • References


    • For selected reviews, see:
    • 1a Badillo JJ, Hanhan NV, Franz AK. Curr. Opin. Drug Discovery Dev. 2010; 13: 758
    • 1b Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 1c Dounay AB, Overman LE. Chem. Rev. 2003; 103: 2945
    • 1d Lin H, Danishefsky SJ, Gelsemine A. Angew. Chem. Int. Ed. 2003; 42: 36
    • 1e Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
    • 2a Tokunaga T, Hume WE, Umezome T, Okazaki K, Ueki Y, Kumagai K, Hourai S, Nagamine J, Seki H, Taiji M, Noguchi H, Nagata R. J. Med. Chem. 2001; 44: 4641
    • 2b Serradeil-Le GalC, Wagnon JIII, Tonerre B, Roux R, Garcia G, Aulombard A. CNS Drug Rev. 2005; 11: 53
    • 2c Sorbera LA, Martin L, Castaner RM. Drugs Future 2001; 26: 9

      For reviews, see:
    • 3a Cao ZY, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
    • 3b Dalpozzo R. Adv. Synth. Catal. 2017; 359: 1772
    • 3c Cheng D, Ishihara Y, Tan B, Barbas CF. III. ACS Catal. 2014; 4: 743
    • 3d Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 3e Chauhan P, Chimni SS. Tetrahedron: Asymmetry 2013; 24: 343
    • 3f Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
    • 3g Dalpozzo R, Bartoli G, Bencivenni G. Chem. Soc. Rev. 2012; 41: 7247
    • 3h Ball-Jones NR, Badillo JJ, Franz AK. Org. Biomol. Chem. 2012; 10: 5165
    • 3i Rios R. Chem. Soc. Rev. 2012; 41: 1060
    • 3j Shen K, Liu X, Lin L, Feng X. Chem. Sci. 2012; 3: 327
    • 3k Alba A.-NR, Rios R. Chem. Asian J. 2011; 6: 720
    • 3l Zhou J, Liu Y.-L, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
    • 3m Trost BM, Brennan MK. Synthesis 2009; 3003

      For some recent examples, see:
    • 4a He R, Wu SC, Tang HM, Huo XH, Sun ZL, Zhang WB. Org. Lett. 2018; 20: 6183
    • 4b Dai L, Lin LL, Zheng JF, Zhang D, Liu XH, Feng XM. Org. Lett. 2018; 20: 5314
    • 4c Cañellas S, Alonso P, Pericàs M. À. Org. Lett. 2018; 20: 4806
    • 4d Li BY, Du DM. Adv. Synth. Catal. 2018; 360: 3164
    • 4e Wang KZ, Wang LQ, Liu XH, Li D, Zhu HY, Wang PX, Liu YY, Yang DX, Wang R. Org. Lett. 2017; 19: 4351
    • 4f Qiu JS, Wu D, Karmaker PG, Qi G, Chen P, Yin H, Chen F.-X. Org. Lett. 2017; 19: 4018
    • 4g Lin HH, Zhou ZJ, Cai J, Han BW, Gong L, Meggers E. J. Org. Chem. 2017; 82: 6457
    • 4h You Y, Wu ZJ, Wang ZH, Xu XY, Zhang XM, Yuan WC. J. Org. Chem. 2015; 80: 8470
    • 4i Zhang YH, Hu XY, Li SS, Liao YJ, Yuan WC, Zhang XM. Tetrahedron 2014; 70: 2020
    • 4j Siau WY, Li W, Xue F, Ren Q, Wu M, Sun S, Guo H, Jiang X, Wang J. Chem. Eur. J. 2012; 18: 9491
  • 5 Jin Y, Chen M, Ge S, Hartwig JF. Org. Lett. 2017; 19: 1390
    • 6a Marques CS, Burke AJ. Eur. J. Org. Chem. 2016; 806
    • 6b Zhuang Y, He Y, Zhou Z, Xia W, Cheng C, Wang M, Chen B, Zhou Z, Pang J, Qiu L. J. Org. Chem. 2015; 80: 6968
    • 6c Li Q, Wan P, Wang S, Zhuang Y, Li L, Zhou Y, He Y, Cao R, Qiu L, Zhou Z. Appl. Catal., A 2013; 458: 201
    • 6d Marques CS, Burke AJ. ChemCatChem 2016; 8: 3518
    • 6e Yamamoto K, Qureshi Z, Tsoung J, Pisella G, Lautens M. Chem. Eur. J. 2016; 18: 4954
    • 7a Shirakawa S, Koga K, Tokuda T, Yamamoto K, Maruoka K. Angew. Chem. Int. Ed. 2014; 53: 6220
    • 7b Tang S, Zhou D, Wang YC. Eur. J. Org. Chem. 2014; 3656
    • 7c Han ZQ, Chen WC, Dong S, Yang CY, Liu HJ, Pan YH, Yan L, Jiang ZY. Org. Lett. 2012; 14: 4670
    • 7d Zhang ZH, Zheng WH, Antilla JC. Angew. Chem. Int. Ed. 2011; 50: 1135
    • 7e Zhao XM, Zhang ZW, Chen MX, Tang WH, Shi M. Eur. J. Org. Chem. 2011; 3001
    • 7f Zhu Q, Lu YX. Angew. Chem. Int. Ed. 2010; 49: 7753
    • 7g He R, Shirakawa S, Maruoka K. J. Am. Chem. Soc. 2009; 131: 16620
    • 7h He R, Ding C, Maruoka K. Angew. Chem. Int. Ed. 2009; 48: 4559
    • 7i Ishimaru T, Shibata N, Horikawa T, Yasuda N, Nakamura S, Toru T, Shiro M. Angew. Chem. Int. Ed. 2008; 47: 4157
  • 8 Liao YH, Liu XL, Wu ZJ, Du XL, Zhang XM, Yuan WC. Chem. Eur. J. 2012; 18: 6679
  • 9 For a review, see: Hosamani B, Ribeiro MF, da Silva EN, Namboothiri IN. N. Org. Biomol. Chem. 2016; 14: 6913

    • For some recent examples, see:
    • 10a Liu QJ, Zhu J, Song XY, Wang LJ, Wang SR, Tang Y. Angew. Chem. Int. Ed. 2018; 57: 3810
    • 10b Feng W, Yang H, Wang Z, Gou BB, Chen J, Zhou L. Org. Lett. 2018; 20: 2929
    • 10c Teng Q, Qi J, Zhou L, Xu Z, Tung CH. Org. Chem. Front. 2018; 5: 990
    • 10d Li XQ, Yang H, Wang JJ, Gou BB, Chen J, Zhou L. Chem. Eur. J. 2017; 23: 5381
    • 10e Moliterno M, Cari R, Puglisi A, Antenucci A, Sperandio C, Moretti E, Di Sabato A, Salvio R, Bella M. Angew. Chem. Int. Ed. 2016; 55: 6525
    • 10f Gu J, Xiao BX, Chen YR, Du W, Chen YC. Adv. Synth. Catal. 2016; 358: 296
    • 10g Ma C, Zhang T, Zhou JY, Mei GJ, Shi F. Chem. Commun. 2017; 12124
    • 10h Sun XX, Zhang HH, Li GH, Meng L, Shi F. Chem. Commun. 2016; 2968
    • 10i Wang Y, Sun M, Yin L, Shi F. Adv. Synth. Catal. 2015; 357: 4031
    • 10j Zhang YC, Zhao JJ, Jiang F, Sun SB, Shi F. Angew. Chem. Int. Ed. 2014; 53: 13912
    • 10k Zhu GM, Bao GJ, Li YP, Yang JX, Sun WS, Li J, Hong L, Wang R. Org. Lett. 2016; 18: 5288
    • 10l Chen YH, Cheng DJ, Zhang J, Wang Y, Liu XY, Tan B. J. Am. Chem. Soc. 2015; 137: 15062
    • 10m Hashimoto T, Nakatsu H, Maruoka K. Angew. Chem. Int. Ed. 2015; 54: 4617
    • 10n Liao LH, Shu C, Zhang MM, Liao YJ, Hu XY, Zhang YH, Wu ZJ, Yuan WC, Zhang XM. Angew. Chem. Int. Ed. 2014; 53: 10471
    • 10o Zhang MM, Yu SW, Hu FZ, Liao YJ, Liao LH, Xu XY, Yuan WC, Zhang XM. Chem. Commun. 2016; 8757
    • 10p Hu XY, Hu FZ, Chen H, Xu XY, Yuan WC, Zhang XM. ChemistrySelect 2018; 3: 3975
    • 11a Xu H, Zuend SJ, Woll MG, Tao Y, Jacobsen EN. Science 2010; 327: 986
    • 11b Zhu Q, Lu YX. Angew. Chem. Int. Ed. 2010; 49: 7753
    • 12a Yu B, Yu DQ, Liu HM. Eur. J. Med. Chem. 2015; 97: 673
    • 12b Millers KA, Tsukamoto S, Williams RM. Nat. Chem. 2009; 1: 63
    • 12c Greshock TJ, Grubs AW, Jiao P, Wicklow DT, Gloer JB, Williams RM. Angew. Chem. Int. Ed. 2008; 47: 3573
    • 12d Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 13a Nicolaou KC, Kang Q, Wu TR, Lim CS, Chen DY. K. J. Am. Chem. Soc. 2010; 132: 7540
    • 13b Ge HM, Zhu CH, Shi da H, Zhang LD, Xie DQ, Yang J, Ng SW, Tan RX. Chem. Eur. J. 2008; 14: 376
    • 13c Kwon Y.-J, Sohn M.-J, Zheng C.-J, Kim W.-G. Org. Lett. 2007; 9: 2449
    • 13d Lindquist N, Fenical W, Van Duyne GD, Clardy J. J. Am. Chem. Soc. 1991; 113: 2303
  • 14 Enantioselective Arylation of 2-Oxoindoline-3-carboxamide 1 with Quinone Monoimine 2; General Procedure: 2-Oxoindoline-3-carboxamide 1 (0.10 mmol) and catalyst 3i (0.002 mmol, 2 mol%) were dissolved in CHCl3 (2 mL) in a flame-dried vial equipped with a magnetic stirring bar. After stirring for 30 minutes at –30 °C, quinone monoimine 2 (0.12 mmol, 1.2 equiv) was added. The reaction mixture was stirred at –30 °C until no starting material was detected by TLC. The mixture was subjected to chromatography (silica gel, petroleum ether/EtOAc, 2:1) to afford the desired product 4.
  • 15 3-(2-Hydroxy-5-(4-methylphenylsulfonamido)phenyl)-1-methyl-2-oxo-N-phenylindoline-3-carboxamide (4a): Yield: 0.042 g (80%); white solid; mp 169.0–171.5 °C; 95% ee, HPLC condition: Chiralpak Ic-H (n-hexane/ethanol: 70:30, 1.0 mL/min, t major = 7.476 min, t minor = 9.122 min); [α]D 20 = +25.2 (c 1.50, CH2Cl2). 1H NMR (300 MHz, DMSO-d 6): δ = 9.81 (s, 1 H), 9.67 (s, 1 H), 9.27 (s, 1 H), 7.55 (d, J = 8.0 Hz, 2 H), 7.45 (d, J = 7.9 Hz, 2 H), 7.33 (q, J = 7.5 Hz, 3 H), 7.19 (d, J = 7.9 Hz, 2 H), 7.16–6.98 (m, 4 H), 6.96–6.81 (m, 2 H), 6.58 (d, J = 8.5 Hz, 1 H), 3.22 (s, 3 H), 2.32 (s, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 175.33, 164.48, 152.71, 143.96, 143.28, 138.39, 136.97, 129.79, 129.48, 129.16, 128.83, 128.63, 127.14, 126.56, 125.70, 124.54, 123.58, 122.94, 122.76, 120.51, 116.80, 108.88, 63.38, 27.13, 21.44. HRMS (ESI): m/z [M+Na]+ calcd. for C30H27N3O5SNa+: 550.1402; found: 550.1407.