Synthesis 2019; 51(15): 2945-2958
DOI: 10.1055/s-0037-1611577
paper
© Georg Thieme Verlag Stuttgart · New York

DBU-Catalyzed Michael Reaction of Enones with 1,3-Diketones and the Subsequent Iodine-Mediated Transformation of the Adducts to Polysubstituted Phenols

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, No. 1, Gehu Road, Wujin District, Changzhou 213164, P. R. of China   Email: estally@yahoo.com
,
Mei-Ling Chen
,
Xiao-Qiang Sun
,
› Author Affiliations
We are grateful for the financial support from Natural Science Foundation of Jiangsu Province (BK20181462), the Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110), and the Advanced Catalysis and Green Manufacturing Collaborative Innovation Center.
Further Information

Publication History

Received: 12 February 2019

Accepted after revision: 24 March 2019

Publication Date:
18 April 2019 (online)


Abstract

An efficient DBU-catalyzed Michael reaction of enones with 1,3-diketones has been developed for the gram-scale preparation of the Michael adducts. It is attractive that most of the adducts can be obtained with high purity through simple filtration. A convenient I2-mediated transformation of the adducts to polysubstituted phenols has also been exploited. This conversion is remarkable with the cyclization and aromatization processes by using DBU as the base and I2 as the oxidant. Furthermore, hydroxylated (E)-stilbene derivatives can be easily prepared by using this method. The readily available starting materials, metal-free and mild conditions make this approach simple and practical.

Supporting Information

 
  • References

    • 1a Mishra BB, Tiwari VK. Eur. J. Med. Chem. 2011; 46: 4769
    • 1b Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
    • 1c Sun W, Li G, Hong L, Wang R. Org. Biomol. Chem. 2016; 14: 2164
    • 1d Broadley KJ, Burnell E, Davies RH, Lee AT. L, Snee S, Thomas EJ. Org. Biomol. Chem. 2016; 14: 3765
    • 1e The Chemistry of Phenols . Rappoport Z. Wiley; Chichester: 2003
    • 2a Zheng Y.-W, Chen B, Ye P, Feng K, Wang W, Meng Q.-Y, Wu L.-Z, Tung C.-H. J. Am. Chem. Soc. 2016; 138: 10080
    • 2b Wu Y, Zhou B. Org. Lett. 2017; 19: 3532
    • 2c Maji A, Bhaskararao B, Singha S, Sunoj RB, Maiti D. Chem. Sci. 2016; 7: 3147
    • 2d Viswanadh N, Ghotekar GS, Thoke MB, Velayudham R, Shaikh AC, Karthikeyan M, Muthukrishnan M. Chem. Commun. 2018; 54: 2252
    • 2e Olah GA, Ernst TD. J. Org. Chem. 1989; 54: 1204
    • 2f Yang L, Huang Z, Li G, Zhang W, Cao R, Wang C, Xiao J, Xue D. Angew. Chem. Int. Ed. 2018; 57: 1968
    • 2g Ding G, Han H, Jiang T, Wu T, Han B. Chem. Commun. 2014; 50: 9072
    • 2h Wu Z, Glaser R. J. Am. Chem. Soc. 2004; 126: 10632
    • 2i Soledade M, Pedras C, Suchy M. Bioorg. Med. Chem. 2006; 14: 714
    • 3a Bedford RB, Coles SJ, Hursthouse MB, Limmert ME. Angew. Chem. Int. Ed. 2003; 42: 112
    • 3b Lee D.-H, Kwon K.-H, Yi CS. J. Am. Chem. Soc. 2012; 134: 7325
    • 3c Schmidt B, Riemer M. J. Org. Chem. 2014; 79: 4104
    • 4a Danheiser RL, Gee SK. J. Org. Chem. 1984; 49: 1672
    • 4b Chow K, Moore HW. Tetrahedron Lett. 1987; 28: 5013
    • 4c Danheiser RL, Brisbois RG, Kowalczyk JJ, Miller RF. J. Am. Chem. Soc. 1990; 112: 3093
    • 4d Huffman MA, Liebeskind LS. J. Am. Chem. Soc. 1990; 112: 8617
    • 4e Huffman MA, Liebeskind LS. J. Am. Chem. Soc. 1991; 113: 2771
    • 4f Collomb D, Doutheau A. Tetrahedron Lett. 1997; 38: 1397
    • 4g Serra S, Fuganti C, Brenna E. Chem. Eur. J. 2007; 13: 6782
    • 5a Hashmi AS. K, Weyrauch JP, Kurpejovic E, Frost TM, Miehlich B, Frey W, Bats JW. Chem. Eur. J. 2006; 12: 5806
    • 5b Chen Y, Yan W, Akhmedov NG, Shi X. Org. Lett. 2010; 12: 344
    • 5c Teo WT, Rao W, Ng CJ. H, Koh SW. Y, Chan PW. H. Org. Lett. 2014; 16: 1248
    • 6a Li C, Zeng Y, Zhang H, Feng J, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2010; 49: 6413
    • 6b Bamfield P, Gordon PF. Chem. Soc. Rev. 1984; 13: 441
  • 7 Stalling T, Harker WR. R, Auvinet A.-L, Cornel EJ, Harrity JP. A. Chem. Eur. J. 2015; 21: 2701
    • 8a Eichinger K, Nussbaumer P, Balkan S, Schulz G. Synthesis 1987; 1061
    • 8b Katritzky AR, Belyakov SA, Fang Y, Kiely JS. Tetrahedron Lett. 1998; 39: 8051
    • 8c Katritzky AR, Belyakov SA, Henderson SA. J. Org. Chem. 1997; 62: 8215
    • 8d Qian J, Yi W, Huang X, Miao Y, Zhang J, Cai C, Zhang W. Org. Lett. 2015; 17: 1090
    • 8e Poudel TN, Lee YR. Chem. Sci. 2015; 6: 7028
    • 8f Hu Z, Dong J, Men Y, Li Y, Xu X. Chem. Commun. 2017; 53: 1739
    • 8g Maezono SM. B, Poudel TN, Lee YR. Org. Biomol. Chem. 2017; 15: 2052
    • 9a Izawa Y, Pun D, Stahl SS. Science 2011; 333: 209
    • 9b Izawa Y, Zheng C, Stahl SS. Angew. Chem. Int. Ed. 2013; 52: 3672
    • 9c Pun D, Diao T, Stahl SS. J. Am. Chem. Soc. 2013; 135: 8213
    • 9d Zhang J, Jiang Q, Yang D, Zhao X, Dong Y, Liu R. Chem. Sci. 2015; 6: 4674
    • 9e Zhang Z, Hashiguchi T, Ishida T, Hamasaki A, Honma T, Ohashi H, Yokoyama T, Tokunaga M. Org. Chem. Front. 2015; 2: 654
    • 9f Poudel TN, Lee YR. Org. Lett. 2015; 17: 2050
    • 10a Liang Y.-F, Li X, Wang X, Zou M, Tang C, Liang Y, Song S, Jiao N. J. Am. Chem. Soc. 2016; 138: 12271
    • 10b Liang Y.-F, Song S, Ai L, Li X, Jiao N. Green Chem. 2016; 18: 6462
    • 10c Wang S.-K, Chen M.-T, Zhao D.-Y, You X, Luo Q.-L. Adv. Synth. Catal. 2016; 358: 4093
    • 11a Miao C.-B, Zhang M, Tian Z.-Y, Xi H.-T, Sun X.-Q, Yang H.-T. J. Org. Chem. 2011; 76: 9809
    • 11b Miao C.-B, Dong C.-P, Zhang M, Ren W.-L, Meng Q, Sun X.-Q, Yang H.-T. J. Org. Chem. 2013; 78: 4329
    • 11c Miao C.-B, Liu R, Sun Y.-F, Sun X.-Q, Yang H.-T. Tetrahedron Lett. 2017; 58: 541
    • 11d Li Y, Xu H, Xing M, Huang F, Ji J, Gao J. Org. Lett. 2015; 17: 3690
    • 12a Miao C.-B, Wang Y.-H, Xing M.-L, Lu X.-W, Sun X.-Q, Yang H.-T. J. Org. Chem. 2013; 78: 11584
    • 12b Miao C.-B, Sun Y.-F, Wu H, Sun X.-Q, Yang H.-T. Adv. Synth. Catal. 2018; 360: 2440
    • 13a Tennen RI, Michishita-Kioi E, Chua KF. Cell 2012; 148: 387
    • 13b Quideau S, Deffieux D, Pouységu L. Angew. Chem. Int. Ed. 2012; 51: 6824
    • 13c Csuk R, Albert S, Kluge R, Ströhl D. Arch. Pharm. Chem. Life Sci. 2013; 346: 499
    • 13d Orsini F, Pelizzoni F, Verotta L, Aburjai T. J. Nat. Prod. 1997; 60: 1082
    • 13e Pettit GR, Singh SB. Can. J. Chem. 1987; 65: 2390
    • 13f Zheng S, Zhong Q, Mottamal M, Zhang Q, Zhang C, LeMelle E, McFerrin H, Wang G. J. Med. Chem. 2014; 57: 3369
    • 14a Lion CJ, Matthews CS, Stevens MF. G, Westwell AD. J. Med. Chem. 2005; 48: 1292
    • 14b Albert S, Horbach R, Deising HB, Siewert B, Csuk R. Bioorg. Med. Chem. 2011; 19: 5155
    • 14c Csuk R, Albert S, Siewert B, Schwarz S. Eur. J. Med. Chem. 2012; 54: 669
    • 14d Martí-Centelles R, Cejudo-Marín R, Falomir E, Murga J, Carda M, Marco JA. Bioorg. Med. Chem. 2013; 21: 3010
    • 14e Shard A, Sharma N, Bharti R, Dadhwal S, Kumar R, Sinha AK. Angew. Chem. Int. Ed. 2012; 51: 12250

      Although a similar condensation product as 36 was reported to transform to phenol in the presence of Br2, the acetyl group was unaffected in the product and no persuasive NMR data was provided, see:
    • 15a Abdalla M, Salem MA, Hataba A. Egypt. J. Chem. 1980; 22: 223
    • 15b Sammour A, Elzawahry M, Elhashash M, Nagy A. Egypt. J. Chem. 1978; 19: 779
  • 16 Yang H.-M, Gao Y.-H, Li L, Jiang Z.-Y, Lai G.-Q, Xia C.-G, Xu L.-W. Tetrahedron Lett. 2010; 51: 3836
  • 17 Ying A.-G, Chen X.-Z, Wu C.-L, Zheng R.-H, Liang H.-D, Ge C.-H. Synth. Commun. 2012; 42: 3455
  • 18 Heitman LH, Narlawar R, Vries HD, Willemsen MN, Wolfram D, Brussee J, Ijzerman AP. J. Med. Chem. 2009; 52: 2036
  • 19 Takeuchi M, Akiyama R, Kobayashi S. J. Am. Chem. Soc. 2005; 127: 13096