Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(13): 2713-2719
DOI: 10.1055/s-0037-1611533
DOI: 10.1055/s-0037-1611533
special topic
Enantioselective Synthesis of 2-Substituted Pyrrolidines via Intramolecular Reductive Amination
Financial support from the National Natural Science Foundation of China (21772155, 21402155 and 21602172) is gratefully acknowledged.Further Information
Publication History
Received: 19.03.2109
Accepted after revision: 12 April 2019
Publication Date:
07 May 2019 (online)

Published as part of the Special Topic Amination Reactions in Organic Synthesis
Abstract
Catalyzed by the complex generated in situ from iridium and the chiral ferrocene ligand, tert-butyl (4-oxo-4-arylbutyl)carbamate substrates were deprotected and then reductively cyclised to form 2-substituted arylpyrrolidines in a one-pot manner, in which the intramolecular reductive amination was the key step. A range of chiral 2-substituted arylpyrrolidines were synthesised in up to 98% yield and 92% ee.
Key words
asymmetric catalysis - intramolecular reductive amination - iridium - chiral ligand - arylpyrrolidineSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611533.
- Supporting Information
-
References
- 1a Nugent TC, El-Shazly M. Adv. Synth. Catal. 2010; 352: 753
- 1b Wang DS, Chen QA, Lu SM, Zhou YG. Chem. Rev. 2012; 112: 2557
- 1c Zhang ZF, Butt NA, Zhang WB. Chem. Rev. 2016; 116: 14769
- 1d Felpin FX, Lebreton J. Eur. J. Org. Chem. 2003; 3693
- 2 Parsons M, Robinson D, Cardozo L. Int. J. Clin. Pract. 2005; 59: 831
- 3 Rotte SC. K, Chittiboyina AG, Khan IA. Eur. J. Org. Chem. 2013; 6355
- 4a Mitch CH, Quimby SJ, Diaz N, Pedregal C, de la Torre MG, Jimenez A, Shi Q, Canada EJ, Kahl SD, Statnick MA, McKinzie DL, Benesh DR, Rash KS, Barth VN. J. Med. Chem. 2011; 54: 8000
- 4b Wang J, Song Q, Xu A, Bao Y, Xu Y, Zhu Q. Eur. J. Med. Chem. 2017; 130: 15
- 5a Maryanoff BE, McComsey DF, Costanzo MJ, Setler PE, Gardocki JF, Shank RP, Schneider CR. J. Med. Chem. 1984; 27: 943
- 5b Maryanoff BE, McComsey DF, Inners RR, Mutter MS, Wooden GP, Mayo SL, Olofson RA. J. Am. Chem. Soc. 1989; 111: 2487
- 6a Tang W, Zhang X. Chem. Rev. 2003; 103: 3029
- 6b Nugent TC, El-Shazly M. Adv. Synth. Catal. 2010; 352: 753
- 6c Xie JH, Zhu S.-F, Zhou QL. Chem. Rev. 2011; 111: 1713
- 6d Burgess LE, Meyers AI. J. Org. Chem. 1992; 57: 1656
- 6e Willoughby CA, Buchwald SL. J. Am. Chem. Soc. 1994; 116: 8952
- 6f Dunsmore CJ, Carr R, Fleming T, Turner NJ. J. Am. Chem. Soc. 2006; 128: 2224
- 6g Chang M, Li W, Hou G, Zhang X. Adv. Synth. Catal. 2010; 352: 3121
- 6h Cochrane EJ, Leonori D, Hassall LA, Coldham I. Chem. Commun. 2014; 50: 9910
- 6i Hussain S, Leipold F, Man H, Wells E, France SP, Mulholland KR, Grogan G, Turner NJ. ChemCatChem 2015; 7: 579
- 6j Aleku GA, Man H, France SP, Leipold F, Hussain S, Toca-Gonzalez L, Marchington R, Hart S, Turkenburg JP, Grogan G, Turner NJ. ACS Catal. 2016; 6: 3880
- 6k Ge C, Liang R, Liu R, Xiang B, Jia Y. Tetrahedron Lett. 2017; 58: 142
- 6l Zhang Y, Kong D, Wang R, Hou G. Org. Biomol. Chem. 2017; 15: 3006
- 7 Zhang Y, Yan Q, Zi G, Hou G. Org. Lett. 2017; 19: 4215
- 8a Alinezhad H, Yavari H, Salehian F. Curr. Org. Chem. 2015; 19: 1021
- 8b Seiple IB, Zhang Z, Jakubec P, Langlois-Mercier A, Wright PM, Hog DT, Yabu K, Allu SR, Fukuzaki T, Carlsen PN, Kitamura Y, Zhou X, Condakes ML, Szczypiński FT, Green WD, Myers AG. Nature 2016; 533: 338
- 8c Jagadeesh RV, Murugesan K, Alshammari AS, Neumann H, Pohl M.-M, Radnik J, Beller M. Science 2017; 358: 326
- 8d Hayes KS. Appl. Catal. A 2001; 221: 187
- 9a Williams GD, Pike RA, Wade CE, Wills M. Org. Lett. 2003; 5: 4227
- 9b Strotman NA, Baxter CA, Brands KM. J, Cleator E, Krska SW, Reamer RA, Wallace DJ, Wright TJ. J. Am. Chem. Soc. 2011; 133: 8362
- 9c Zhou H, Liu Y, Yang S, Zhou L, Chang M. Angew. Chem. Int. Ed. 2017; 56: 2725
- 10a Hong L, Sun W, Yang D, Li G, Wang R. Chem. Rev. 2016; 116: 4006
- 10b Xiao D, Zhang X. Angew. Chem. Int. Ed. 2001; 40: 3425
- 10c Li C, Villa-Marcos B, Xiao J. J. Am. Chem. Soc. 2009; 131: 6967
- 11 Chi Y, Zhou Y.-G, Zhang X. J. Org. Chem. 2003; 68: 4120
- 12a Raja A, Hong B, Lee G. Org. Lett. 2014; 16: 5756
- 12b Yoon TP, Jacobsen EN. Angew. Chem. Int. Ed. 2005; 44: 466
- 13a Yamagata T, Tadaoka H, Nagata M, Hirao T, Kataoka Y, Ratovelomanana-Vidal V, Genet JP, Mashima K. Organometallics 2006; 25: 2505
- 13b Spindler F, Blaser H.-U. In Handbook of Homogeneous Hydrogenation . de Vries JG, Elsevier CJ. Wiley-VCH; Weinheim: 2007. Vol. 3; 1193
- 14 Reyes E, Jiang H, Milelli A, Elsner P, Hazell RG, Jøgensen KA. Angew. Chem. Int. Ed. 2007; 46: 9202
- 15 Giovannini A, Savoia D, Umani-Ronchi A. J. Org. Chem. 1989; 54: 228
- 16 Schroder GS, Birkebak JK, Gron NN, Sarvary I, Vestergaard M, Haahr GA, Teuber L, Stasi LP. WO 2016020295, 2016
- 17 Mauser H, Nettekoven M, Schmitt S. US 20120053200, 2012
- 18 Claude JR, Tobin JD, Andrew PB, Kim DJ. J. Org. Chem. 2005; 70: 3705