RSS-Feed abonnieren
DOI: 10.1055/s-0037-1611527
Intermolecular Reactions of Pyridyl Radicals with Olefins via Photoredox Catalysis
Autor*innen
Financial support for this work was provided by startup funds from Emory University and the National Institutes of Health (GM129495).
Publikationsverlauf
Received: 01. März 2019
Accepted after revision: 04. April 2019
Publikationsdatum:
24. April 2019 (online)

Abstract
Pyridines are valuable motifs in a number of bioactive and functional molecules. The chemoselective functionalization of these structures from stable and widely available starting materials is a meaningful goal. We have demonstrated selective formation of pyridyl radicals at any position (2-, 3-, 4-pyridyl), through the action of a reducing photoredox catalyst. These radicals readily engage alkenes to deliver high-value products. Alteration of the reaction medium has enabled the use of a diverse range of alkene subtypes in a highly divergent and chemoselective manner.
1 Introduction
2 Minisci-Type Pyridine Alkylation
3 An Alternate Approach – Reductive Radical Formation
4 Conjugate Addition of Pyridyl Radicals
5 Radical Hydroarylation of Neutral and Rich Olefins
6 Solvent-Based Chemoselectivity
7 Summary and Outlook
-
References
- 1a Baumann M, Baxendale IR. Beilstein J. Org. Chem. 2013; 9: 2265
- 1b Joule JA, Mills K. Heterocyclic Chemistry, 4th ed. Blackwell; Malden, MA: 2000
- 1c Eicher T, Hauptmann S. The Chemistry of Heterocycles: Structures, Reactions, Synthesis and Applications, 2nd ed. Wiley-VCH; Weinheim: 2003
- 1d Grimmett MR. Adv. Heterocycl. Chem. 1993; 58: 271
- 2 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 3 Almond-Thynne J, Blakemore DC, Pryde DC, Spivey AC. Chem. Sci. 2017; 8: 40
- 4 Zhao S, Gensch T, Murray B, Niemeyer ZL, Sigman MS, Biscoe MR. Science 2018; 362: 670
- 5a Smith JM, Harwood SJ, Baran PS. Acc. Chem. Res. 2018; 51: 1807
- 5b Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
- 6 Minisci F, Galli B, Cecere M, Malatesta V, Caronna T. Tetrahedron Lett. 1968; 54: 5609
- 7 Minisci F, Bernardi R, Bertini F, Galli R, Perchinummo M. Tetrahedron 1971; 27: 3575
- 8 Minisci F, Vismara E, Fontana F, Morini G, Serravalle M, Giordano C. J. Org. Chem. 1986; 51: 4411
- 9 Molander GA, Colombel V, Braz VA. Org. Lett. 2011; 13: 1852
- 10 Barton DH. R, Garcia B, Togo H, Zard SZ. Tetrahedron Lett. 1986; 27: 1327
- 11 Coppa F, Fontaria F, Minisci F, Pianese G, Tortoreto P, Zhao L. Tetrahedron Lett. 1992; 33: 687
- 12 Seiple IB, Su S, Rodriguez RA, Gianatassio R, Fujiwara Y, Sobel AL, Baran PS. J. Am. Chem. Soc. 2010; 132: 13194
- 13 Nagib DA, MacMillan DW. C. Nature 2011; 480: 224
- 14 Fujiwara Y, Dixon JA, O’Hara F, Funder ED, Dixon DD, Rodriguez RA, Baxter RD, Herlé B, Sach N, Collins MR, Ishihara Y, Baran PS. Nature 2012; 492: 95
- 15 DiRocco DA, Dykstra K, Krska S, Vachal P, Conway DV, Tudge M. Angew. Chem. Int. Ed. 2014; 53: 4802
- 16 Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
- 17 Shankaran K, Sloan CP, Snieckus V. Tetrahedron Lett. 1985; 26: 6001
- 18 Garden SJ, Avila DV, Beckwith AL. J, Bowry VW, Ingold KU, Lusztyk J. J. Org. Chem. 1996; 61: 805
- 19 Birch AJ. J. Chem. Soc. 1944; 430
- 20 Nguyen JD, D'Amato EM, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2012; 4: 854
- 21 Discekici EH, Treat NJ, Poelma SO, Mattson KM, Hudson ZM, Luo Y, Hawker CJ, de Alaniz JR. Chem. Commun. 2015; 51: 11705
- 22a Senaweera S, Weaver JD. J. Am. Chem. Soc. 2016; 138: 2520
- 22b Arora A, Weaver JD. Org. Lett. 2016; 18: 3996
- 22c Singh A, Fennell CJ, Weaver JD. Chem. Sci. 2016; 7: 6796
- 22d Singh A, Kubik JJ, Weaver JD. Chem. Sci. 2015; 6: 7206
- 22e Arora A, Teegardin KA, Weaver JD. Org. Lett. 2015; 17: 3722
- 23a Ghosh I, König B. Angew. Chem. Int. Ed. 2016; 55: 7676
- 23b Marzo L, Ghosh I, König B. ACS Catal. 2016; 6: 6780
- 23c Ghosh I, Ghosh T, Bardagi JI, König B. Science 2014; 346: 725
- 24 Aycock RA, Wang H, Jui NT. Chem. Sci. 2017; 8: 3121
- 25 Aycock RA, Vogt DB, Jui NT. Chem. Sci. 2017; 8: 7998
- 26 Karady S, Amato S, Weinstock M. Tetrahedron Lett. 1984; 25: 4337
- 27 Boyington AJ, Riu M.-LY, Jui NT. J. Am. Chem. Soc. 2017; 139: 6582
- 28 Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
- 29 Seath CP, Vogt DB, Xu Z, Boyington AJ, Jui NT. J. Am. Chem. Soc. 2018; 140: 15525
- 30 Campbell JM, Xu H.-C, Moeller KD. J. Am. Chem. Soc. 2012; 134: 18338
- 31 Bégué J.-P, Bonnet-Delpon D, Crousse B. Synlett 2004; 18