Synthesis 2019; 51(15): 3014-3020
DOI: 10.1055/s-0037-1610702
paper
© Georg Thieme Verlag Stuttgart · New York

A Regioselective Approach to C3-Aroylcoumarins via Cobalt-Catalyzed­ C(sp2)–H Activation Carbonylation of Coumarins

a   SOHA Pharmaceutical Company, PO BOX 31999-98461, Karaj, Iran   Email: pashazadeh.rahim@yahoo.com
,
Saideh Rajai-Daryasarei
b   School of Chemistry, College of Science, University of Tehran, Tehran, Iran
,
Siyavash Mirzaei
c   Department of Genetics, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
,
Mehdi Soheilizad
d   CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
,
Samira Ansari
d   CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
,
Meisam Shabanian
e   Faculty of Chemistry and Petrochemical Engineering, Standard Research Institute (SRI) Karaj, Karaj, Iran
› Author Affiliations
We acknowledge the financial support from the SOHA pharmaceutical company and the University of Tehran.
Further Information

Publication History

Received: 22 January 2019

Accepted after revision: 12 March 2019

Publication Date:
02 April 2019 (online)


Abstract

A new cobalt-catalyzed C–H bond activation of coumarins with aryl halides or pseudohalides and carbon monoxide insertion to give various 3-aroylcoumarin derivatives is described. It is the first time that CO as C1 feedstock is used as the coupling partners in cobalt-catalyzed regioselective coumarin C–H functionalization reactions. Upon activation with manganese powder, the Co catalyzes the C–H bond activation carbonylation reactions of aryl iodides, bromides, and even triflates under mild conditions, providing the regioselective aroylated products in moderate to good yields.

Supporting Information

 
  • References

    • 2a Meijere AD, Diederich F. Metal-Catalyzed Cross-Coupling Reactions, 2nd ed. Wiley-VCH; Weinheim: 2004
    • 2b Luh T.-Y, Leung M.-K, Wong K.-T. Chem. Rev. 2000; 100: 3187
    • 2c Grigorjeva L, Daugulis O. Org. Lett. 2014; 16: 4688
    • 2d Gao K, Paira R, Yoshikai N. Adv. Synth. Catal. 2014; 356: 1486
    • 2e Schneider U, Kobayashi S. Acc. Chem. Res. 2012; 45: 1331
    • 2f Tang S, Liu Y, Gao X, Wang P, Huang P, Lei A. J. Am. Chem. Soc. 2018; 140: 6006
    • 2g Ritleng V, Sirlin C, Pfeffer M. Chem. Rev. 2002; 102: 1731
    • 2h Beccalli EM, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007; 107: 5318
    • 3a Beller M, Wu X.-F. Transition Metal Catalyzed Carbonylation Reactions: Carbonylative Activation of C−X Bonds. Springer; Berlin: 2013
    • 3b Beller M. Catalytic Carbonylation Reactions . Springer; Berlin: 2006
    • 3c Kollär L. Modern Carbonylation Methods . Wiley-VCH; Weinheim: 2008
    • 3d Gadge ST, Gautam P, Bhanage BM. Chem. Rec. 2016; 16: 835
    • 3e Liu Q, Zhang H, Lei A. Angew. Chem. Int. Ed. 2011; 50: 10788
    • 3f Guan Z.-H, Chen M, Ren Z.-H. J. Am. Chem. Soc. 2012; 134: 17490
    • 3g Li W, Duan Z, Zhang X, Zhang H, Wang M, Jiang R, Zeng H, Liu C, Lei A. Angew. Chem. Int. Ed. 2015; 54: 1893
    • 3h Kotovshchikov YN, Latyshev GV, Beletskaya IP, Lukashev NV. Synthesis 2018; 50: 1926
    • 3i Kaplan JM, Hruszkewycz DP, Strambeanu II, Nunn CJ, VanGelder KF, Dunn AL, Wozniak DI, Dobereiner GE, Leitch DC. Organometallics 2019; 38: 85
  • 5 Murahashi S, Horiie S. J. Am. Chem. Soc. 1956; 78: 4816
    • 6a Xu H, Jia L. Org. Lett. 2003; 5: 3955
    • 6b Ni J, Li J, Fan Z, Zhang A. Org. Lett. 2016; 18: 5960
    • 6c Zeng L, Tang S, Wang D, Deng Y, Chen J.-L, Lee J.-F, Lei A. Org. Lett. 2017; 19: 2170
    • 6d Baek Y, Kim S, Jeon B, Lee PH. Org. Lett. 2016; 18: 104
    • 6e Grigorjeva L, Daugulis O. Org. Lett. 2014; 16: 4688
    • 7a Amatore M, Gosmini C, Périchon J. Eur. J. Org. Chem. 2005; 989
    • 7b Amatore M, Gosmini C, Périchon J. J. Org. Chem. 2006; 71: 6130
    • 7c Amatore M, Gosmini C. Angew. Chem. Int. Ed. 2008; 47: 2089
    • 7d Moncomble A, Le Floch P, Gosmini C. Chem. Eur. J. 2009; 15: 4770
    • 7e Amatore M, Gosmini C. Chem. Eur. J. 2010; 16: 5848
    • 7f Lu S, Jin T, Bao M, Yamamoto Y. J. Am. Chem. Soc. 2011; 133: 12842
    • 7g Komeyama K, Kashihara T, Takaki K. Tetrahedron Lett. 2013; 54: 5659
    • 7h Nogi K, Fujihara T, Terao J, Tsuji Y. Chem. Commun. 2014; 50: 13052
    • 7i Komeyama K, Asakura R, Fukuoka H, Takaki K. Tetrahedron Lett. 2015; 56: 1735
    • 7j Bassler DP, Alwali A, Spence L, Beale O, Beng TK. J. Organomet. Chem. 2015; 780: 6
    • 7k Cai D.-J, Lin P.-H, Liu C.-Y. Eur. J. Org. Chem. 2015; 5448
    • 7l Nogi K, Fujihara T, Terao J, Tsuji Y. J. Org. Chem. 2015; 80: 11618
    • 7m Bourne-Branchu Y, Gosmini C, Danoun G. Chem. Eur. J. 2017; 23: 10043
    • 8a Adib M, Pashazadeh R, Rajai-Daryasarei S, Kabiri R, Gohari SJ. A. Synlett 2016; 27: 2241
    • 8b Adib M, Pashazadeh R, Rajai-Daryasarei S, Mirzaei P, Gohari SJ. A. Tetrahedron Lett. 2016; 57: 3071
    • 8c Adib M, Rajai-Daryasarei S, Pashazadeh R, Tajik M, Mirzaei P. Tetrahedron Lett. 2016; 57: 3701
    • 8d Adib M, Pashazadeh R, Rajai-Daryasarei S, Kabiri R, Jahani M. RSC Adv. 2016; 6: 110656
    • 8e Adib M, Pashazadeh R. Synlett 2018; 29: 136
    • 8f Adib M, Pashazadeh R, Rajai-Daryasarei S, Moradkhani F, Jahani M, Gohari SJ. A. Tetrahedron 2018; 74: 3858
  • 9 Mirzaei S, Rajai-Daryasarei S, Soheilizad M, Kabiri R, Ansari S, Shabanian M, Pashazadeh R. Synthesis 2019; 51: 1680
  • 10 Barral MC, Delgado E, Gutiérrez-Puebla E, Jimenez-Aparicio R, Monge A, Del Pino C, Santos A. Inorg. Chim. Acta 1983; 74: 101
  • 11 Frantz DE, Weaver nDG, Carey JP, Kress MH, Dolling UH. Org. Lett. 2002; 4: 4717
    • 12a Rao HS. P, Sivakumar S. J. Org. Chem. 2006; 71: 8715
    • 12b Yuan JW, Yin QY, Yang LR, Mai WP, Mao P, Xiao YM, Qu LB. RSC Adv. 2015; 5: 88258
    • 12c Jafarpour F, Abbasnia M. J. Org. Chem. 2016; 81: 11982
    • 12d Specht DP, Martic PA, Farid S. Tetrahedron 1982; 38: 1203
    • 12e Wang Y, Yu ZH, Zheng HF, Shi DQ. Org. Biomol. Chem. 2012; 10: 7739