Synlett 2019; 30(02): 218-224
DOI: 10.1055/s-0037-1610678
letter
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Induced Aerobic Oxidation of Benzylic C(sp3)–H of Alkylarenes Promoted by DDQ, tert-Butyl Nitrite, and Acetic Acid

Decheng Pan
,
Yiqing Wang
,
Meichao Li
,
Xinquan Hu
,
Nan Sun
,
Liqun Jin
,
Baoxiang Hu
,
Zhenlu Shen*
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: zhenlushen@zjut.edu.cn
› Author Affiliations
This project was supported by the National Natural Science Foundation of China (21776260 and 21773211) and by the Natural Science Foundation of Zhejiang Province (LY17B060007).
Further Information

Publication History

Received: 20 September 2018

Accepted after revision: 19 November 2018

Publication Date:
17 December 2018 (online)


Abstract

A visible-light photocatalytic aerobic oxidation of benzylic C(sp3)–H bonds proceeded in the presence of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, tert-butyl nitrite, and acetic acid. Advantages of this aerobic oxidation method include its relatively mild conditions, the use of visible-light irradiation instead of conventional thermal methods, the use of a low catalyst loading, and the ability to oxidize a range of alkyl­arenes, including xanthenes, thioxanthenes, and 9,10-dihydroacridines, to the corresponding ketones in excellent yields.

Supporting Information

 
  • References and Notes

    • 1a Shibley IA. Jr, Amaral KE, Aurentz DJ, McCaully RJ. J. Chem. Educ. 2010; 87: 1351
    • 1b Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DH. B. Chem. Rev. 2006; 106: 2493
    • 1c Halkides CJ. J. Chem. Educ. 2000; 77: 1428
    • 1d Triandafillidi I, Tzaras DI, Kokotos CG. ChemCatChem 2018; 10: 2521
    • 2a Newhouse T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
    • 2b Li X.-H, Chen J.-S, Wang X.-C, Sun J.-H, Antonietti M. J. Am. Chem. Soc. 2011; 133: 8074
    • 2c Kesavan L, Tiruvalam R, Ab Rahim MH, bin Saiman MI, Enache DI, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Knight DW, Kiely CJ, Hutchings GJ. Science 2011; 331: 195
    • 2d Nakamura R, Obora Y, Ishii Y. Adv. Synth. Catal. 2009; 351: 1677
    • 2e Tan J, Zheng T, Yu Y, Xu K. RSC Adv. 2017; 7: 15176
    • 2f Tomás RA. F, Bordado JC. M, Gomes JF. P. Chem. Rev. 2013; 113: 7421
    • 2g Yang J, Hu J, Huang Y, Xu X, Qing F. Chin. J. Chem. 2017; 35: 867
    • 3a Muzart J. Tetrahedron Lett. 1987; 28: 2131
    • 3b Muzart J. Chem. Rev. 1992; 92: 113
    • 3c Muzart J, Ajjou AN. J. Mol. Catal. 1994; 92: 277
    • 3d Yamazaki S. Org. Lett. 1999; 1: 2129
    • 3e Choudary BM, Prasad AD, Bhuma V, Swapna V. J. Org. Chem. 1992; 57: 5841
    • 4a Lee NH, Lee CS, Jung DS. Tetrahedron Lett. 1998; 39: 1385
    • 4b Shaabani A, Lee DG. Tetrahedron Lett. 2001; 42: 5833
    • 4c Pan J.-F, Chen K. J. Mol. Catal. A: Chem. 2001; 176: 19
    • 4d Zhao D, Lee DG. Synthesis 1994; 915
  • 5 Khenkin AM, Neumann R. J. Am. Chem. Soc. 2002; 124: 4198
  • 6 Dohi T, Takenaga N, Goto A, Fujioka H, Kita Y. J. Org. Chem. 2008; 73: 7365
    • 7a Aguadero A, Falcon H, Campos-Martin JM, Al-Zahrani SM, Fierro JL. G, Alonso JA. Angew. Chem. Int. Ed. 2011; 50: 6557
    • 7b Recupero F, Punta C. Chem. Rev. 2007; 107: 3800
    • 7c Lee JM, Park EJ, Cho SH, Chang S. J. Am. Chem. Soc. 2008; 130: 7824
    • 8a Biradar AV, Asefa T. Appl. Catal., A 2012; 435–436: 19
    • 8b Kumar RA, Maheswari CU, Ghantasala S, Jyothi C, Reddya KR. Adv. Synth. Catal. 2011; 353: 401
    • 8c Nakanishi M, Bolm C. Adv. Synth. Catal. 2007; 349: 861
    • 8d Alanthadka A, Devi ES, Nagarajan S, Sridharan V, Suvitha A, Maheswari CU. Eur. J. Org. Chem. 2016; 4872
    • 8e Ang WJ, Lam Y. Org. Biomol. Chem. 2015; 13: 1048
    • 8f Catino AJ, Nichols JM, Choi H, Gottipamula S, Doyle MP. Org. Lett. 2005; 7: 5167
    • 8g Tanaka H, Oisaki K, Kanai M. Synlett 2017; 28: 1576
    • 8h Hossain MM, Shyu S.-G. Tetrahedron 2016; 72: 4252
    • 9a Liu P, Liu Y.-G, Wong EL.-M, Xiang S, Che C.-M. Chem. Sci. 2011; 2: 2187
    • 9b Moriyama K, Takemura M, Togo H. Org. Lett. 2012; 14: 2414
    • 10a Wu X.-F. Tetrahedron Lett. 2012; 53: 6123
    • 10b Akhlaghinia B, Ebrahimabadi H, Goharshadi EK, Samiee S, Rezazadeh S. J. Mol. Catal. A: Chem. 2012; 357: 67
    • 10c Hu Y, Zhou L, Lu W. Synthesis 2017; 49: 4007
    • 10d Gonsalvi L, Arends IW. C. E, Moilanen P, Sheldon RA. Adv. Synth. Catal. 2003; 345: 1321
    • 11a Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851
    • 11b Liang Y.-F, Ning J. Acc. Chem. Res. 2017; 50: 1640
    • 11c Jiang X, Zhai Y, Chen J, Han Y, Yang Z, Ma S. Chin. J. Chem. 2018; 36: 15
    • 11d Lia X, Jiao N. Chin. J. Chem. 2017; 35: 1349
    • 12a Nakai S, Uematsu T, Ogasawara Y, Suzuki K, Yamaguchi K, Mizuno N. ChemCatChem 2018; 10: 1096
    • 12b Hong C, Ma J, Li M, Jin L, Hu X, Mo W, Hu B, Sun N, Shen Z. Tetrahedron 2017; 73: 3002
    • 12c Sterckx H, Houwer JD, Mensch C, Herrebout W, Tehrani KA, Maes BU. W. Beilstein J. Org. Chem. 2016; 12: 144
    • 12d Miao C, Zhao H, Zhao Q, Xia C, Sun W. Catal. Sci. Technol. 2016; 6: 1378
    • 12e Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
    • 12f Tzouras NV, Stamatopoulos IK, Papastavrou AT, Liori A, Vougioukalakis GC. Coord. Chem. Rev. 2017; 343: 25
  • 13 Chen K, Zhang P, Wang Y, Li H. Green Chem. 2014; 16: 2344
    • 14a Zhang B, Cui Y, Jiao N. Chem. Commun. 2012; 48: 4498
    • 14b Zhang Z, Gao Y, Liu Y, Li J, Xie H, Li H, Wang W. Org. Lett. 2015; 17: 5492
    • 14c Liu Q, Lu M, Yang F, Wei W, Sun F, Yang Z, Huang S. Synth. Commun. 2010; 40: 1106
    • 14d Pradhan PP, Bobbitt JM, Bailey WF. J. Org. Chem. 2009; 74: 9524
    • 14e Wang H, Wang Z, Huang H, Tan J, Xu K. Org. Lett. 2016; 18: 5680
    • 14f Li J.-S, Yang F, Yang Q, Li Z.-W, Chen G.-Q, Da Y.-D, Huang P.-M, Chen C, Zhang Y, Huang L.-Z. Synlett 2017; 28: 994
    • 15a Deng G.-B, Wang Z.-Q, Xia J.-D, Qian P.-C, Song R.-J, Hu M, Gong L.-B, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 1535
    • 15b Cai S, Zhao X, Wang X, Liu Q, Li Z, Wang DZ. Angew. Chem. Int. Ed. 2012; 51: 8050
    • 15c Cherevatskaya M, Neumann M, Füldner S, Harlander C, Kümmel S, Dankesreiter S, Pfitzner A, Zeitler K, König B. Angew. Chem. Int. Ed. 2012; 51: 4062
    • 15d Lechner R, Kümmel S, König B. Photochem. Photobiol. Sci. 2010; 9: 1367
    • 15e Brimioulle R, Bach T. Science 2013; 342: 840
    • 15f Yoo W.-J, Kobayashi S. Green Chem. 2013; 15: 1844
    • 15g Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
    • 16a Li S, Zhu B, Lee R, Qiao B, Jiang Z. Org. Chem. Front. 2018; 5: 380
    • 16b Jung J, Ohkubo K, Prokop-Prigge KA, Neu HM, Goldberg DP, Fukuzumi S. Inorg. Chem. 2013; 52: 13594
    • 16c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 16d Pandey G, Jadhav D, Tiwari SK, Singha B. Adv. Synth. Catal. 2014; 356: 2813
    • 16e Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 16f Shaw MH, Twilton J, MacMillan WC. J. Org. Chem. 2016; 81: 6898
    • 16g Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 16h Chen J, Cen J, Xu X, Li X. Catal. Sci. Technol. 2016; 6: 349
    • 16i Yu W, Ouyang Y, Xu X.-H, Qing F.-L. Chin. J. Chem. 2018; 36: 1024
    • 17a Yi H, Bian C, Hu X, Niu L, Lei A. Chem. Commun. 2015; 51: 14046
    • 17b Finney LC, Mitchell LJ, Moody CJ. Green Chem. 2018; 20: 2242
    • 17c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 17d Silvi M, Melchiorre P. Nature 2018; 554: 41
    • 17e Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
    • 17f Sideri IK, Voutyritsa E, Kokotos CG. Org. Biomol. Chem. 2018; 16: 4596
    • 17g Walsh K, Sneddon HF, Moody CJ. Org. Lett. 2014; 16: 5224
    • 17h Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
    • 18a Walker D, Hiebert JD. Chem. Rev. 1967; 67: 153
    • 18b Buckle DR, Collier SJ, McLaws MD. In Encyclopedia of Reagents for Organic Synthesis . Crich D. Wiley; New York: 2005. DOI: 10.1002/047084289X.rd114.pub2
    • 18c Bharate SB. Synlett 2006; 496
    • 18d Song C, Dong X, Yi H, Chiang C, Lei A. ACS Catal. 2018; 8: 2195
    • 18e Batista VS, Crabtree RH, Konezny SJ, Luca OR, Praetorius JM. New J. Chem. 2012; 36: 1141
    • 18f Benfatti F, Capdevila MG, Zoli L, Benedetto E, Cozzi PG. Chem. Commun. 2009; 5919
    • 18g Li J.-S, Xue Y, Fu D.-M, Li D.-L, Li Z.-W, Liu W.-D, Pang H.-L, Zhang Y-F, Cao Z, Zhang L. RSC Adv. 2014; 4: 54039
    • 18h Höfler C, Rüchardt C. Liebigs Ann. 1996; 183
    • 18i Masuo R, Ohmori K, Hintermann L, Yoshida S, Suzuki K. Angew. Chem. Int. Ed. 2009; 48: 3462
    • 18j Wu Z, Wei G, Lian G, Yu B. J. Org. Chem. 2010; 75: 5725
    • 18k Cheng D, Wu L, Deng Z, Xu X, Yan J. Adv. Synth. Catal. 2017; 359: 4317
    • 18l Cheng D, Wu L, Lv H, Xu X, Yan J. J. Org. Chem. 2017; 82: 1610
    • 18m Yi H, Liu Q, Liu J, Zeng ZQ, Yang YH, Lei AW. ChemSusChem 2012; 5: 2143
    • 19a Wendlandt AE, Stahl SS. Angew. Chem. Int. Ed. 2015; 54: 14638
    • 19b Jung HH, Floreancig PE. Tetrahedron 2009; 65: 10830
    • 19c Rüchardt C, Gerst M, Ebenhoch J. Angew. Chem. Int. Ed. 1997; 36: 1406
    • 20a Shen Z, Dai J, Xiong J, He X, Mo W, Hu B, Sun N, Hu X. Adv. Synth. Catal. 2011; 353: 3031
    • 20b Shen Z, Sheng L, Zhang X, Mo W, Hu B, Sun N, Hu X. Tetrahedron Lett. 2013; 54: 1579
    • 20c Ma J, Hu Z, Li M, Zhao W, Hu X, Mo W, Hu B, Sun N, Shen ZL. Tetrahedron 2015; 71: 6733
    • 21a Fukuzumi S, Ohkubo K, Tokuda Y, Suenobu T. J. Am. Chem. Soc. 2000; 122: 4286
    • 21b Hubig SM, Bockman TM, Kochi JK. J. Am. Chem. Soc. 1997; 119: 2926
  • 22 Ohkubo K, Fujimoto A, Fukuzumi S. J. Am. Chem. Soc. 2013; 135: 5368
  • 23 Rusch F, Schober J.-C, Brasholz M. ChemCatChem 2016; 8: 2881
    • 24a Zhang X, Yang L, Wu Y, Du J, Mao Y, Wang X, Luan S, Lei Y, Li X, Sun H, You Q. Tetrahedron Lett. 2014; 55: 4883
    • 24b Zhang S.-J, Ding Z.-S, Jiang F.-S, Ge Q.-F, Guo D.-W, Lid H.-B, Hu W.-X. Med. Chem. Commun. 2014; 5: 512
    • 24c Patra N, Dehury N, Pal A, Behera A, Patra S. Mater. Sci. Eng., C 2018; 90: 439
    • 24d Yilmaz G, Guler E, Barlas FB, Timur S, Yagci Y. Macromol. Rapid Commun. 2016; 37: 1046
    • 24e Iyer A, Clay A, Jockusch S, Sivaguru J. J. Phys. Org. Chem. 2017; 30: e3738
    • 24f Silva R, Palmeira A, Carmo H, Barbosa DJ, Gameiro M, Gomes A, Mafalda Paiva A, Sousa E, Pinto M, de Lourdes Bastos M, Remião F. Arch. Toxicol. 2015; 89: 1783
    • 24g Zhang B, Chen K, Wang N, Gao CM, Sun QS, Li L, Chen Y, Tan C, Liu H, Jiang Y. Eur. J. Med. Chem. 2015; 93: 214
    • 24h Michael JP. Nat. Prod. Rep. 2008; 25: 166
    • 24i Belmont P, Bosson J, Godet T, Tiano M. Anti-Cancer Agents Med. Chem. 2007; 7: 139
    • 25a Shen Z, Chen M, Fang T, Li M, Mo W, Hu B, Sun N, Hu X. Tetrahedron Lett. 2015; 56: 2768
    • 25b Hong Y, Fang T, Li M, Shen Z, Hu X, Mo W, Hu B, Sun N, Jin L. RSC Adv. 2016; 6: 51908
    • 26a Li P, Jia X. Synthesis 2018; 50: 711
    • 26b Khaligh NG. Curr. Org. Chem. 2018; 22: 1120
    • 26c Fang C, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. Adv. Synth. Catal. 2016; 358: 1157
    • 26d Yi S, Li M, Hu X, Mo W, Shen Z. Chin. Chem. Lett. 2016; 27: 1505
    • 26e He X, Shen Z, Mo W, Sun N, Hu B, Hu X. Adv. Synth. Catal. 2009; 351: 89
    • 26f Ma J, Hong C, Wan Y, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. Tetrahedron Lett. 2017; 58: 652
    • 26g Lancefield CS, Ojo OS, Tran F, Westwood NJ. Angew. Chem. Int. Ed. 2015; 54: 258
  • 27 Xanthone (2a; 9H-Xanthen-9-one); Typical Procedure A15-mL Schlenk tube equipped with a magnetic stirrer bar was charged with xanthene (1a; 182 mg, 1.0 mmol) and DDQ (2.3 mg, 1 mol%). The air in the tube was replaced with O2 and the tube was sealed with a rubber plug. TBN (5.9 μL, 5 mol%), AcOH (12.0 mg, 20 mol%), and DCE (5.0 mL) were added. The Schlenk tube was placed in a dark box and illuminated with a 18 W blue LED. The mixture was stirred vigorously under an O2 balloon until the reaction was complete (GC). The mixture was then concentrated on a rotary evaporator, and the residue was purified by column chromatography (silica gel, PE–EtOAc) to give a white solid; yield: 194 mg (99%); mp 174–175 °C. 1H NMR (500 MHz, CDCl3): δ = 8.35–8.33 (m, 2 H), 7.73–7.70 (m, 2 H), 7.48 (d, J = 8.5 Hz, 2 H), 7.39–7.36 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 177.2, 156.2, 134.8, 126.7, 123.9, 121.9, 118.0. MS (EI): m/z (%): 196.11 (93) [M]+, 139.10 (100).
  • 28 Guo X, Zipse H, Mayr H. J. Am. Chem. Soc. 2014; 136: 13863