Synthesis 2019; 51(07): 1643-1648
DOI: 10.1055/s-0037-1610674
paper
© Georg Thieme Verlag Stuttgart · New York

Morpholin-2-one Derivatives via Intramolecular Acid-Catalyzed Hydroamination

,
David W. Knight*
School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK   Email: knightdw@cf.ac.uk   Email: wirth@cf.ac.uk
,
School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK   Email: knightdw@cf.ac.uk   Email: wirth@cf.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 06 September 2018

Accepted after revision: 06 November 2018

Publication Date:
07 January 2019 (online)


Abstract

Substituted morpholin-2-one derivatives were readily obtained in two steps starting from commercially available N-protected amino acids. In a metal-free and practical method, a catalytic amount of trifluoromethanesulfonic acid was sufficient to generate morpholinones under mild reaction conditions in an intramolecular hydroamination reaction in good to excellent yields.

Supporting Information

 
  • References

    • 1a Nilsson JW, Kvarnström I, Musil D, Nilsson I, Samulesson B. J. Med. Chem. 2003; 46: 3985
    • 1b Wijtmans R, Vink MK. S, Schoemaker HE, Deilt FL, Blaauw RH. Synthesis 2004; 641
    • 1c Couladours EA, Moutsos VI, Pitsinos EN. Tetrahedron Lett. 2004; 45: 7779
    • 1d Shikre BA, Deshmukh AR. A. S. Tetrahedron: Asymmetry 2004; 15: 1081
    • 1e Ku IW, Cho S, Doddareddy MR, Jang MS, Keum G, Lee J.-H, Chung BY, Kim Y, Rhima H, Kang SB. Bioorg. Med. Chem. Lett. 2006; 16: 5244
  • 2 Bardiot D, Thevissen K, De Brucker K, Peeters A, Cos P, Taborda CP, McNaughton M, Maes L, Chaltin P, Cammue BP. A, Marchand A. J. Med. Chem. 2015; 58: 1502
  • 3 Gonzalez AZ, Eksterowicz J, Bartberger MD, Beck HP, Canon J, Chen A, Chow D, Duquette J, Fox BM, Fu J, Huang X, Houze JB, Jin L, Li Z, Li Z, Ling Y, Lo M.-C, Long AM, McGee LR, McIntosh J, McMinn DL, Oliner JD, Osgood T, Rew Y, Saiki AY, Shaffer P, Wortman S, Yakowec P, Yan X, Ye Q, Yu D, Zhao X, Zhou J, Olson SH, Medina JC, Sun D. J. Med. Chem. 2014; 57: 2472
  • 4 Blake TR, Waymouth RM. J. Am. Chem. Soc. 2014; 136: 9252
  • 5 Kashima C, Harada K. J. Org. Chem. 1989; 54: 789
    • 6a Chung K, Banik SM, De Crisci AG, Pearson DM, Blake TR, Olsson JV, Ingram AJ, Zare RN, Waymouth RM. J. Am. Chem. Soc. 2013; 135: 7593
    • 6b McNally A, Haffemayer B, Collins BS. L, Gaunt MJ. Nature 2014; 510: 129
    • 7a Endo Y, Bäckvall J.-E. Chem. Eur. J. 2011; 17: 12596
    • 7b Zhang J, Balaraman E, Leitus G, Milstein D. Organometallics 2011; 30: 5716
    • 7c Nicklaus CM, Phua PH, Buntara T, Noel S, Heeres HJ, de Vries JG. Adv. Synth. Catal. 2013; 355: 2839
  • 8 Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Green Chem. 2009; 11: 793
    • 9a Zhao MM, McNamara JM, Ho G.-J, Emerson KM, Song ZJ, Tschaen DM, Brands KM. J, Dolling U.-H, Grabowski EJ. J, Reider PJ, Cottrell IF, Ashwood MS, Bishop BC. J. Org. Chem. 2002; 67: 6743
    • 9b Kasima C, Harada K. J. Chem. Soc., Perkin Trans. 1 1988; 152
    • 9c Samanta S, Mal A, Halder S, Ghorai MK. Synthesis 2015; 47: 3776
  • 10 Numajiri Y, Jiménez-Osés G, Wang B, Houk KN, Stoltz BM. Org. Lett. 2015; 17: 1082
    • 11a Griffiths-Jones CM, Knight DW. Tetrahedron 2010; 66: 4150
    • 11b Griffiths-Jones CM, Knight DW. Tetrahedron 2011; 67: 8515
    • 11c Aldmairi AH, Knight DW, Wirth T. Synlett 2017; 28: 2976
    • 11d Aldmairi AH, Griffiths-Jones C, Dupauw A, Henderson L, Knight DW. Tetrahedron Lett. 2017; 58: 3690
  • 12 Zhong C, Wang Y, Hung AW, Schreiber SL, Young DW. Org. Lett. 2011; 13: 5556
  • 13 Thomanek H, Schenk ST, Stein E, Kogel K.-H, Schikora A, Maison W. Org. Biomol. Chem. 2013; 11: 6994