Synthesis 2018; 50(20): 4063-4070
DOI: 10.1055/s-0037-1610453
paper
© Georg Thieme Verlag Stuttgart · New York

Direct Preparation of Indole Hemiaminals through Organocatalytic Nucleophilic Addition of Indole to Aldehydes

Nan Zhang
a   Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. of China   Email: wenling.qin@cqu.edu.cn
,
Yige Li
b   Applied Chemistry, Department of Chemical Engineering, Shenyang Institute of Science and Technology, Shenyang 110000, P. R. of China
,
Zhili Chen
a   Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. of China   Email: wenling.qin@cqu.edu.cn
,
a   Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. of China   Email: wenling.qin@cqu.edu.cn
› Author Affiliations
This study was supported by the Scientific Research Foundation of China (Grant No: 21772018).
Further Information

Publication History

Received: 23 April 2018

Accepted after revision: 31 May 2018

Publication Date:
16 July 2018 (online)


Abstract

Hemiaminals are common in natural products as well as bioactive compounds. Hemiaminals with an indole moiety are particularly attractive due to the significant bioactivity of indoles. Herein, we reported an efficient organocatalyzed indole N-1 nucleophilic addition of α-oxoaldehydes to deliver various indole hemiaminals in good yields (up to 92%) and excellent regioselectivities with DABCO or triethylamine as the catalyst. The method is characterized by mild reaction conditions, widely available reagents, and general substrate scope, and it is also applicable to late-stage transformations without affecting the hemiaminal group. In addition, we carried out this reaction in an enantioselective fashion in good yields and high ee values with two general substrates.

Supporting Information

 
  • References

    • 1a Chang F.-Y. Kawashima SA. Brady SF. Biochemistry 2014; 53: 7123
    • 1b Ma K. Wang J.-S. Luo J. Kong L.-Y. Fitoterapia 2015; 100: 133
    • 1c Salacz L. Charpentier C. Suffert J. Girard N. J. Org. Chem. 2017; 82: 2257
    • 1d Wong S.-P. Chong K.-W. Lim K.-H. Lim S.-H. Low Y.-Y. Kam T.-S. Org. Lett. 2016; 18: 1618
    • 1e Abouzeid S. Beutling U. Surup F. Bar FM. A. Amer MM. Badria FA. Yahyazadeh M. Brönstrup M. Selmar D. J. Nat. Prod. 2017; 80: 2905
    • 1f Du Y.-L. Williams DE. Patrick BO. Andersen RJ. Ryan KS. ACS Chem. Biol. 2014; 9: 2748
    • 1g Mondal P. Argade NP. Synthesis 2017; 49: 1849
    • 2a Lal B. Gund VG. Bioorg. Med. Chem. Lett. 2004; 14: 1123
    • 2b Pandey G. Mishra A. Khamrai J. Org. Lett. 2017; 19: 3267
    • 3a Troast DM. Porco JA. Jr. Org. Lett. 2002; 4: 991
    • 3b Davies SG. Hunter IA. Nicholson RL. Roberts PM. Savory ED. Smith AD. Tetrahedron 2004; 60: 7553
    • 3c Scott MS. Luckhurst CA. Dixon DJ. Org. Lett. 2005; 7: 5813
    • 3d Ingrassia L. Mulliez M. Synthesis 1999; 1731
    • 3e Bach J. Blachère C. Bull SD. Davies SG. Nicholson RL. Price PD. Sanganee HJ. Smith AD. Org. Biomol. Chem. 2003; 1: 2001
  • 4 Iwasawa T. Hooley RJ. Rebek JJr. Science (Washington, D. C.) 2007; 317: 493
    • 5a Liou J.-P. Wu C.-Y. Hsieh H.-P. Chang C.-Y. Chen C.-M. Kuo C.-C. Chang J.-Y. J. Med. Chem. 2007; 50: 4548
    • 5b Kemnitzer W. Drewe J. Jiang S. Zhang H. Crogan-Grundy C. Labreque D. Bubenick M. Attardo G. Denis R. Lamothe S. Gourdeau H. Tseng B. Kasibhatla S. Cai SX. J. Med. Chem. 2008; 51: 417
    • 5c Deguest G. Bischoff L. Fruit C. Marsais F. Org. Lett. 2007; 9: 1165
    • 5d Zhu Z. Chen H.-G. Goel OP. Chan OH. Stilgenbauer LA. Stewart BH. Bioorg. Med. Chem. Lett. 2000; 10: 1121
    • 6a Evans DA. Borg G. Scheidt KA. Angew. Chem. Int. Ed. 2002; 41: 3188
    • 6b McFarland JM. Joshi NS. Francis MB. J. Am. Chem. Soc. 2008; 130: 7639
    • 6c Williams DM. Brown DM. J. Chem. Soc., Perkin Trans. 1 1995; 1225
    • 6d Tupper DE. Pullar IA. Clemens JA. Fairhurst J. Risius FC. Timms GH. Wedley S. J. Med. Chem. 1993; 36: 912
  • 7 Arai E. Tokuyama H. Linsell MS. Fukuyama T. Tetrahedron Lett. 1998; 39: 71
    • 8a Evans GB. Furneaux RH. Hutchison TL. Kezar HS. Morris PE. Jr. Schramm VL. Tyler PC. J. Org. Chem. 2001; 66: 5723
    • 8b Delgado A. Clardy J. J. Org. Chem. 1993; 58: 2862
    • 8c Garg NK. Caspi DD. Stoltz BM. J. Am. Chem. Soc. 2005; 127: 5970
    • 8d Dhanak D. Reese CB. J. Chem. Soc., Perkin Trans. 1 1986; 2181
    • 9a Hui Y. Zhang Q. Jiang J. Lin L. Liu X. Feng X. J. Org. Chem. 2009; 74: 6878
    • 9b Zhang Z.-H. Yin L. Wang Y.-M. Synthesis 2005; 1949
    • 9c Xu X.-H. Kusuda A. Tokunaga E. Shibata N. Green Chem. 2011; 13: 46
    • 9d Zhuang W. Jørgensen KA. J. Chem. Commun. 2002; 1336
    • 9e Kamal A. Qureshi AA. Tetrahedron 1963; 19: 513
    • 9f Li H. Wang Y.-Q. Deng L. Org. Lett. 2006; 8: 4063
    • 10a Dixon DJ. Scott MS. Luckhurst CA. Synlett 2003; 2317
    • 10b Taggart MS. Richter GH. J. Am. Chem. Soc. 1934; 56: 1385
    • 10c Lee DS. Brook MA. Chan TH. Tetrahedron Lett. 1983; 24: 1569
    • 11a Duan M. Liu Y. Ao J. Xue L. Luo S. Tan Y. Qin W. Song CE. Yan H. Org. Lett. 2017; 19: 2298
    • 11b Liu Y. Qin W. Yan H. Synlett 2016; 27: 2756
    • 11c Tan Y. Luo S. Li D. Zhang N. Jia S. Liu Y. Qin W. Song CE. Yan H. J. Am. Chem. Soc. 2017; 139: 6431