Synlett 2019; 30(01): 63-68
DOI: 10.1055/s-0037-1610333
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Approach to Pyrido-4-phenanthridinones by Palladium-Catalyzed Annulation of 4-Quinolones with 2-Bromobenzyl Bromides

Thangaraj Arasakumar
a   School of Chemical Sciences, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India   Email: psmohan59@gmail.com   Email: ps_mohan_in@yahoo.com
b   Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, 599 Portage Avenue, Winnipeg, Manitoba, R3B 2G3, Canada   Email: a.ata@uwinnipeg.ca
,
Selvaraj Shyamsivappan
a   School of Chemical Sciences, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India   Email: psmohan59@gmail.com   Email: ps_mohan_in@yahoo.com
,
Subashini Gopalan
a   School of Chemical Sciences, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India   Email: psmohan59@gmail.com   Email: ps_mohan_in@yahoo.com
,
Athar Ata*
b   Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, 599 Portage Avenue, Winnipeg, Manitoba, R3B 2G3, Canada   Email: a.ata@uwinnipeg.ca
,
Palathurai Subramaniam Mohan*
a   School of Chemical Sciences, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India   Email: psmohan59@gmail.com   Email: ps_mohan_in@yahoo.com
› Author Affiliations
Further Information

Publication History

Received: 18 October 2018

Accepted after revision: 29 October 2018

Publication Date:
28 November 2018 (online)


Abstract

A straightforward approach toward the assembly of phenanthridinone heterocycles has been developed through the palladium-catalyzed N-benzylation/intramolecular coupling reactions of readily prepared 4-quinolones with commercially available 2-bromobenzyl bromide derivatives. The target products were prepared in moderate to good yields, with tolerance of various functional groups.

Supporting Information

 
  • References and Notes

    • 1a Khodade VS, Chandra MS, Banerjee A, Lahiri S, Pulipeta M, Rangarajan R, Chakrapani H. ACS Med. Chem. Lett. 2014; 5: 777
    • 1b Hatae N, Fujita E, Shimoyama S, Ishihara Y, Kurata Y, Choshi T, Nishiyama T, Okada C, Hibino S. Bioorg. Med. Chem. Lett. 2015; 25: 2749
    • 1c Kaliyaperumal SA, Banerjee S, Kumar S. Org. Biomol. Chem. 2014; 12: 6105
    • 1d Cappoen D, Jacobs J, Van TN, Claessens S, Diels G, Anthonissen R, Einarsdottir T, Fauville M, Verschaeve L, Huygen K, De Kimpe N. Eur. J. Med. Chem. 2012; 48: 57
    • 1e Atwell GJ, Baguley BC, Denny WA. J. Med. Chem. 1988; 31: 774
    • 1f Sridharan V, Ribelles P, Ramos MT, Menéndez JC. J. Org. Chem. 2009; 74: 5715
    • 1g Parenty AD. C, Smith LV, Guthrie KM, Long DL, Plumb J, Brown R, Cronin L. J. Med. Chem. 2005; 48: 4504
    • 2a Yan L, Zhao D, Lan J, Cheng Y, Guo Q, Li X, Wu N, You J. Org. Biomol. Chem. 2013; 11: 7966
    • 2b Ngo TN, Janert F, Ehlers P, Hoang DH, Dang TT, Villinger A, Lochbrunner S, Langer P. Org. Biomol. Chem. 2016; 14: 1293
    • 2c Zhang J, Lakowicz JR. J. Phys. Chem. B 2005; 109: 8701
    • 2d Bondarev SL, Knyukshto VN, Tikhomirov SA, Pyrko AN. Opt. Spectrosc. 2006; 100: 386
    • 2e Stevens N, O’Connor N, Vishwasrao H, Samaroo D, Kandel ER, Akins DL, Drain CM, Turro NJ. J. Am. Chem. Soc. 2008; 130: 7182
    • 3a Yamamoto H, Brooks J, Weaver MS, Brown JJ, Murakami T, Murata H. Appl. Phys. Lett. 2011; 99: 033301
    • 3b Giebink NC, D’Andrade BW, Weaver MS, Mackenzie PB, Brown JJ, Thompson ME, Forrest SR. J. Appl. Phys. 2008; 103: 044509
    • 3c Ritchie C, Cooper GJ. T, Song Y.-F, Streb C, Yin H, Parenty AD. C, MacLaren DA, Cronin L. Nat. Chem. 2009; 1: 47
    • 3d Baik C, Kim D, Kang M.-S, Song K, Kang SO, Ko J. Tetrahedron 2009; 65: 5302
    • 4a Michael JP. Nat. Prod. Rep. 1995; 12: 465
    • 4b Jin Z. Nat. Prod. Rep. 2009; 26: 363
    • 4c Aprile-Garcia F, Antunica-Noguerol M, Budziñski ML, Liberman AC, Arzt E. Endocr. Connect. 2014; 3: 1
    • 4d Sun Q, Shen Y.-H, Tian J.-M, Tang J, Su J, Liu R.-H, Li H.-L, Xu X.-K, Zhang W.-D. Chem. Biodiversity 2009; 6: 1751
    • 4e Abdel-Halim OB, Morikawa T, Ando S, Matsuda H, Yoshikawa M. J. Nat. Prod. 2004; 67: 1119
    • 5a Weltin D, Holl V, Hyun JW, Dufour P, Marchal J, Bischoff P. Int. J. Radiat. Biol. 1997; 72: 685
    • 5b Huang S.-H, Xiong M, Chen X.-P, Xiao Z.-Y, Zhao Y.-F, Huang Z.-Y. Oncol. Rep. 2008; 20: 567
    • 5c Holl V, Coelho D, Weltin D, Dufour P, Bischoff P. Anticancer Res. 2000; 20: 3233
    • 5d Weltin D, Picard V, Aupeix K, Varin M, Oth D, Marchal J, Dufour P, Bischoff P. Int. J. Immunopharmacol. 1995; 17: 265
    • 6a Patil S, Kamath S, Sanchez T, Neamati N, Schinazi RF, Buolamwini JK. Bioorg. Med. Chem. 2007; 15: 1212
    • 6b Fujio I, Atsushi A, Mariko I, Masanori M. JP 2002128762, 2002
  • 7 Ruchelman AL, Houghton PJ, Zhou N, Liu A, Liu LF, LaVoie EJ. J. Med. Chem. 2005; 48: 792
  • 8 Guérette M, Najari A, Maltais J, Pouliot J.-R, Dufresne S, Simoneau M, Besner S, Charest P, Leclerc M. Adv. Energy Mater. 2016; 6: 1502094
    • 9a Rajeshkumar V, Lee TH, Chuang SC. Org. Lett. 2013; 15: 1468
    • 9b Meseroll LM. N, McKee JR, Zanger M. Synth. Commun. 2011; 41: 2557
    • 9c Yeung CS, Zhao X, Borduas N, Dong VM. Chem. Sci. 2010; 1: 331
    • 9d Banwell MG, Lupton DW, Ma X, Renner J, Sydnes MO. Org. Lett. 2004; 6: 2741
    • 9e Curran DP, Keller AI. J. Am. Chem. Soc. 2006; 128: 13706
    • 9f Mohanakrishnan AK, Srinivasan PC. J. Org. Chem. 1995; 60: 1939
    • 9g Ling F, Zhang C, Ali C, Lv Y, Zhong W. J. Org. Chem. 2018; 83: 5698
    • 9h Kleppinger R, Lillya CP, Yang C. J. Am. Chem. Soc. 1997; 119: 4097
    • 9i Padwa A, Dimitroff M, Waterson AG, Wu T. J. Org. Chem. 1998; 63: 3986
    • 9j Liang D, Sersen D, Yang C, Deschamps JR, Imler GH, Jiang C, Xue F. Org. Biomol. Chem. 2017; 15: 4390
    • 10a Pimparkar S, Jeganmohan M. Chem. Commun. 2014; 50: 12116
    • 10b Peng X, Wang W, Jiang C, Sun D, Xu Z, Tung C.-H. Org. Lett. 2014; 16: 5354
    • 10c Wang G.-W, Yuan T.-T, Li D.-D. Angew. Chem. Int. Ed. 2011; 50: 1380
    • 10d Karthikeyan J, Cheng C.-H. Angew. Chem. Int. Ed. 2011; 50: 9880
  • 11 Hu Q.-F, Gao T.-T, Shi Y.-J, Lei Q, Yu L.-T. RSC Adv. 2018; 8: 13879
  • 12 Feng M, Tang B, Xu HX, Jiang X. Org. Lett. 2016; 18: 4352
  • 13 Yedage SL, Bhanage BM. J. Org. Chem. 2016; 81: 4103
  • 14 Rao DN, Rasheed S, Das P. Org. Lett. 2016; 18: 3142
    • 15a Gao J, Shao Y, Zhu J, Zhu J, Mao H, Wang X, Lv X. J. Org. Chem. 2014; 79: 9000
    • 15b Liu J, Zhang N, Yue Y, Liu G, Liu R, Zhang Y, Zhuo K. Eur. J. Org. Chem. 2013; 7683
    • 15c Han W, Zhou X, Yang S, Xiang G, Cui B, Chen Y. J. Org. Chem. 2015; 80: 11580
    • 15d Li L, Chen J.-J, Kan X.-L, Zhang L, Zhao Y.-L, Liu Q. Eur. J. Org. Chem. 2015; 4892
    • 16a Würtz S, Rakshit S, Neumann JJ, Dröge T, Glorius F. Angew. Chem. Int. Ed. 2008; 47: 7230
    • 16b Stuart DR, Villemure E, Fagnou K. J. Am. Chem. Soc. 2007; 129: 12072
    • 16c Stuart DR, Fagnou K. Science 2007; 316: 1172
    • 17a Liégault B, Lee D, Huestis MP, Stuart DR, Fagnou K. J. Org. Chem. 2008; 73: 5022
    • 17b Dwight TA, Rue NR, Charyk D, Josselyn R, DeBoef B. Org. Lett. 2007; 9: 3137
    • 17c Hull KL, Sanford MS. J. Am. Chem. Soc. 2007; 129: 11904
    • 17d Wang K, Lu M, Yu A, Zhu X, Wang Q. J. Org. Chem. 2009; 74: 935
    • 17e Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
    • 17f Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
    • 17g Varun BV, Dhineshkumar J, Bettadapur KR, Siddaraju Y, Alagiri K, Prabhu KR. Tetrahedron Lett. 2017; 58: 803
  • 18 Phenanthridinone Derivatives 7 and 9; General Procedure A mixture of the appropriate quinolone 1 (1 mmol), 2-bromobenzyl bromide 5 or 8 (1.5 mmol), and K2CO3 (2 mmol) in anhyd DMF (3 mL) was stirred at 80 °C for 2 h, then cooled to r.t. TBAB (1.5 equiv), K2CO3 (1.5 equiv), and Pd(OAc)2 (10 mol %) were added to the reaction vessel under argon, and the mixture was heated at 80 °C for 3 h. When the reaction was complete, the mixture was cooled and diluted with H2O then extracted with EtOAc. The combined organic extracts were washed with H2O and brine, dried (Na2SO4), filtered, and concentrated. The residue was purified by column chromatography [silica gel, CHCl3–MeOH (9:1)]. Ethyl 2-Fluoro-4-oxo-4H,8H-pyrido[3,2,1-de]phenanthridine-5-carboxylate (7b) Light-yellow solid; yield: 0.116 g (85%); mp 230–232 °C. IR (KBr): 3423, 2924, 1721, 1603 cm–1. 1H NMR (400 MHz, DMSO-d6 ): δ = 8.67 (s, 1 H, ArH), 8.34 (dd, J = 3.2, 6.4 Hz, 1 H, ArH), 8.15–8.13 (m, 1 H, ArH), 7.78 (dd, J = 3.2, 5.6 Hz, 1 H, ArH), 7.49–7.46 (m, 2 H, ArH), 7.36 (t, J = 4.8 Hz, 1 H, ArH), 5.56 (s, 2 H, N–CH2), 4.26 (q, J = 6.8 Hz, 2 H, CH2), 1.30 (t, J = 6.4 Hz, 3 H, CH3). 13C APT (100 MHz, DMSO-d6 ): δ = 172.8, 165.2, 161.1, 158.7, 150.9, 136.3, 134.8, 133.6, 130.5, 130.3, 128.8, 128.2, 122.1, 121.7, 121.4, 120.9, 120.8, 111.6, 111.4, 110.4, 60.2, 56.8, 14.7. HRMS (TOF-ES+): m/z [M + H]+ calcd for C19H15FNO3: 324.1 found: 324.0253.
  • 19 CCDC 1848481 and 1848482 contain the supplementary crystallographic data for compounds 11b and 11c, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 20a Ronaldson V, Storey JM. D, Harrison WT. A. Acta Crystallogr., Sect. E 2005; 61: o3156
    • 20b Ronaldson V, Storey JM. D, Harrison WT. A. Acta Crystallogr., Sect. E 2005; 61: o3200
    • 20c Venkatachalam TK, Zheng Y, Ghosh S, Uckun FM. J. Mol. Struct. 2005; 743: 103
    • 20d Huang J.-Y, Xu W. Acta Crystallogr., Sect. E 2006; 62: o2651
    • 20e Liu D.-Q, Yan F.-Y. Acta Crystallogr., Sect. E 2007; 63: o4202
    • 20f Zhu Y.-Y, Yi H.-P, Li C, Jiang X.-K, Li Z.-T. Cryst. Growth Des. 2008; 8: 1294
  • 21 Reetz MT, Westermann E. Angew. Chem. Int. Ed. 2000; 39: 165