Synlett, Table of Contents Synlett 2018; 29(18): 2417-2421DOI: 10.1055/s-0037-1610298 letter © Georg Thieme Verlag Stuttgart · New YorkSelective Deprotection of N-Tosyl Alkoxyamines Using Bistrifluoromethane Sulfonimide: Formation of Oxime Ethers Mohamed Salah Azizi , Janine Cossy * Laboratory of Organic Chemistry, Institute of Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL Research University, CNRS, 10 Rue Vauquelin, 75231 – Paris Cedex 05, France Email: Janine.Cossy@espci.fr› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Abstract The detosylation of N-tosyl alkoxyamines was realized by treatment with benzaldehyde and bistrifluoromethane sulfonimide as the catalyst to afford the corresponding oxime ethers. The reaction is chemoselective as N-tosyl amines are not deprotected. A mechanism is proposed for this deprotection. Key words Key words N-detosylation - bistrifluoromethane sulfonimide - N-tosyl-alkoxyamine - benzaldehyde - oxime ethers Full Text References References and Notes 1a Maia HL. S. Medeiros MJ. Montenegro MI. Court D. Pletcher D. J. Electroanal. Chem. 1984; 164: 347 1b Civitello ER. Rapoport H. J. Org. Chem. 1992; 57: 834 1c Coeffard V. Thobie-Gautier C. Beaudet I. Le Grognec E. Quintard JP. Eur. J. Org. Chem. 2008; 383 2 Alonso E. Ramón DJ. Yus M. Tetrahedron 1997; 53: 14355 3a Dahlén A. Hilmersson G. Tetrahedron Lett. 2002; 43: 7197 3b Dahlén A. Hilmersson G. Chem. Eur. J. 2003; 9: 1123 3c Dahlén A. Hilmersson G. Tetrahedron Lett. 2003; 44: 2661 3d Dahlén A. Hilmersson G. Knettle BW. Flowers RA. J. Org. Chem. 2003; 68: 4870 3e Dahlén A. Petersson A. Hilmersson G. Org. Biomol. Chem. 2003; 1: 2423 3f Kim M. Dahlén A. Hilmersson G. Knettle BW. Flowers RA. II. Tetrahedron 2003; 59: 10397 3g Dahlén A. Sundgren A. Lahmann M. Oscarson S. Hilmersson G. Org. Lett. 2003; 5: 4085 3h Davis TA. Chopade PR. Hilmersson G. Flowers RA. Org. Lett. 2005; 7: 119 3i Dahlén A. Hilmersson G. J. Am. Chem. Soc. 2005; 127: 8340 3j Dahlén A. Nilsson Å. Hilmersson G. J. Org. Chem. 2006; 71: 1576 3k Ankner T. Hilmersson G. Tetrahedron Lett. 2007; 48: 5707 4 Greene TW. Wuts PG. M. Protective Groups in Organic Synthesis . John Wiley and Sons; New York: 2007. 4th ed. 5 Milburn RR. Snieckus V. Angew. Chem. Int. Ed. 2004; 43: 892 6 Vellemäe E. Lebedev O. Mäeorg U. Tetrahedron Lett. 2008; 49: 1373 7a Nyasse B. Ragnarsson U. Chem. Commun. 1997; 1017 7b Sridhar M. Kumar BA. Narender R. Tetrahedron Lett. 1998; 39: 2847 8 Knowles HS. Parsons AF. Pettifer RM. Rickling S. Tetrahedron 2000; 56: 979 9 Lefenfeld M. Dye JL. Nandi P. Jackson J. WO 2007095276, 2007 10 Uchiyama M. Matsumoto Y. Nakamura S. Ohwada T. Kobayashi N. Yamashita N. Matsumiya A. Sakamoto T. J. Am. Chem. Soc. 2004; 126: 8755 11a Vedejs E. Lin S. J. Org. Chem. 1994; 59: 1602 11b Alonso DA. Andersson PG. J. Org. Chem. 1998; 63: 9455 11c Fujihara H. Nagai K. Tomioka K. J. Am. Chem. Soc. 2000; 122: 12055 11d Hayashi T. Kawai M. Tokunaga N. Angew. Chem. Int. Ed. 2004; 43: 6125 11e Kuriyama M. Soeta T. Hao X. Chen Q. Tomioka K. J. Am. Chem. Soc. 2004; 126: 8128 11f Grach G. Santos JS. O. Lohier J. Mojovic L. Plé N. Turck A. Reboul V. Metzner P. J. Org. Chem. 2006; 71: 9572 11g Duan H. Jia Y. Wang L. Zhou Q. Org. Lett. 2006; 8: 2567 12a Knowles H. Parsons AF. Pettifer RM. Synlett 1997; 271 12b Fresneda P. Molina P. Sanz M. Tetrahedron Lett. 2001; 42: 851 12c Wang S. Dilley A. Poullennec K. Romo D. Tetrahedron 2006; 62: 7155 12d Trost BM. Dong G. J. Am. Chem. Soc. 2006; 128: 6054 12e Moussa Z. Romo D. Synlett 2006; 3294 12f Kumar V. Ramesh NG. Chem. Commun. 2006; 4952 12g Kumar V. Ramesh NG. Org. Biomol. Chem. 2007; 5: 3847 13 Ankner T. Hilmersson G. Org. Lett. 2009; 11: 503 14 Escudero J. Bellosta V. Cossy J. Angew. Chem. Int. Ed. 2018; 57: 574 15a Mendoza O. Rossey G. Ghosez L. Tetrahedron Lett. 2011; 52: 2235 ; and references therein 15b Cossy J. Lutz F. Alauze V. Meyer C. Synlett 2002; 45 16 Compound 9 was isolated as a mixture of E- and Z-isomers in a ratio 96:4. 17 Spectral Data of (E)-9 IR: ν = 2923, 1640, 1446, 1373, 1335, 1210, 1089, 967, 910, 900 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.06 (s, 1 H), 7.60–7.50 (m, 2 H), 7.40–7.30 (m, 3 H), 5.85 (m, 1 H), 5.04 (dqapp, J = 17.0, 1.8 Hz, 1 H), 4.97 (m, 1 H), 4.32 (m, 1 H), 2.18 (m, 2 H), 1.83 (m, 1 H), 1.59 (m, 1 H), 1.30 (d, J = 6.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 145.2, 138.4, 130.8, 129.7, 128.4 (2 C), 126.9 (2 C), 114.6, 79.9, 34.8, 29.7, 19.2. MS (EI): m/z = 203 (13) [M+•], 202 (40), 188 (8), 158 (8), 132 (3), 122 (7), 121 (10), 120 (9), 104 (42), 94 (4), 89 (5), 82 (6), 78 (9), 77 (47), 67 (15), 65 (8), 55 (100), 51 (13). 18 General Procedure for the Synthesis of Oxime Ethers from N-Tosyl Alkoxyamines In a round-bottom flask, a mixture of a solution of N-tosyl alkoxyamide (0.2 mmol, 1 equiv) in anhydrous CH2Cl2 (c = 0.25 M), aldehyde (2 equiv), and a solution of HNTf2 (0.1 equiv) in anhydrous CH2Cl2 was stirred at 40 °C for 18 h. The reaction mixture was cooled to r.t. and saturated aqueous Na2CO3 was added. The two phases were separated, and the aqueous layer was extracted four times with CH2Cl2. The combined organic layers were washed with brine, dried over MgSO4, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to obtain the desired oxime ether. 19 Spectroscopic Data for 17 1H NMR (400 MHz, CDCl3): δ = 8.02 (s, 1 H), 7.52–7.49 (m, 2 H), 6.90–6.70 (m, 2 H), 5.85 (m, 1 H), 5.04 (dqapp, J = 17.1, 1.8 Hz, 1 H), 4.96 (m, 1 H), 4.29 (m, 1 H), 3.82 (s, 3 H), 2.20–2.15 (m, 2 H), 1.81 (m, 1 H), 1.60 (m, 1 H), 1.29 (d, J = 6.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 160.7, 147.5, 138.5, 128.3 (2 C), 125.4, 114.5, 114.1 (2C), 78.7, 55.3, 34.9, 29.7, 19.8. MS (EI): m/z = 233 (22) [M+•], 232 (33), 218 (26), 188 (11), 174 (13), 162 (10), 151 (41), 150 (22), 147 (15), 146 (9), 136 (20), 135 (58), 134 (78), 108 (50), 107 (20), 92 (19), 91 (12), 77 (36), 67 (6), 55 (100), 51 (7). HRMS (ESI): m/z calcd for C14H20NO2 [M + H]+: 234.1489; found: 234.1485. 20 Spectroscopic Data for (E)-18 IR: ν = 3077, 2969, 2936, 2838, 1607, 1572, 1504, 1463, 1438, 1418, 1372, 1311, 1283, 1270, 1208, 1159, 1120, 1107, 1068, 1034, 993, 965 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.37 (s, 1 H), 7.72 (d, J = 8.6 Hz, 1 H), 6.48 (dd, J = 8.6, 0.5 Hz, 1 H), 6.42 (d, J = 2.3 Hz, 1 H), 5.85 (m, 1 H), 5.03 (dqapp, J = 17.1, 1.8 Hz, 1 H), 4.95 (m, 1 H), 4.28 (m, 1 H), 3.82 (s, 3 H), 3.81 (s, 3 H), 2.17 (m, 2 H), 1.81 (m, 1 H), 1.60 (m, 1 H), 1.29 (d, J = 6.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 162.1, 158.7, 143.9, 138.6, 127.2, 114.4, 114.3, 105.3, 98.2, 78.5, 55.5, 55.4, 34.9, 29.7, 19.8. MS (EI) m/z: 263 (M+., 12), 204 (10), 192 (11), 177 (14), 166 (10), 164 (37), 163 (15), 150 (18), 149 (100), 137 (12), 134 (14), 122 (14), 121 (44), 120 (18), 107 (16), 92 (10), 91 (10), 79 (11), 77 (22), 67 (10), 55 (59). HRMS (ESI): m/z calcd for C15H22NO3 [M + H]+: 264.1594; found: 264.1591. 21 Spectroscopic Data for 13 IR: ν = 3073, 2925, 1573, 1448, 1340, 1273, 1210, 1046, 944, 913 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.09 (s, 1 H), 7.60–7.55 (m, 2 H), 7.40–7.30 (m, 3 H), 5.87 (m, 1 H), 5.06–5.00 (m, 2 H), 4.04 (s, 2 H), 2.17 (dtapp, J = 7.5 Hz, 0.9 Hz, 2 H), 1.43 (m, 10 H). 13C NMR (100 MHz, CDCl3): δ = 147.7, 134.8, 132.5, 129.5, 128.6 (2 C), 126.8 (2 C), 117.3, 79.5, 40.1, 37.2, 32.7 (2 C), 26.2, 21.4 (2 C). MS (EI): m/z = 257 (14), 256 (36), 132 (5), 122 (62), 106 (100), 104 (58), 95 (30), 93 (12), 81 (64), 79 (20), 69 (13), 55 (30), 51 (13). Supplementary Material Supplementary Material Supporting Information