Synlett 2018; 29(15): 2039-2042
DOI: 10.1055/s-0037-1610229
letter
© Georg Thieme Verlag Stuttgart · New York

An Efficient Direct Access to Carbamates from Alcohols and TosMIC Mediated by Iodine in DMSO

Naresh Pogaku
a   D-207, Discovery Laboratory, Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India   CSIR-IICT communication number: IICT/Pubs./2018/234
b   Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
,
Palakodety Radha Krishna
a   D-207, Discovery Laboratory, Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India   CSIR-IICT communication number: IICT/Pubs./2018/234
,
Y. Lakshmi Prapurna*
a   D-207, Discovery Laboratory, Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India   CSIR-IICT communication number: IICT/Pubs./2018/234
› Author Affiliations
Dr. Y. Lakshmi Prapurna thanks Department of Science and Technology (DST) for financial grant under Women Scientists Scheme-A (WOS-A), Grant No. SR/WOS-A/CS-1034/2014 (G). The author N.P. acknowledges UGC, New Delhi for fellowship support.
Further Information

Publication History

Received: 14 June 2018

Accepted: 10 July 2018

Publication Date:
02 August 2018 (online)


Abstract

A new approach for the synthesis of carbamates from alcohols and TosMIC promoted by iodine/DMSO system is reported. This method offers a one-step, direct and practical strategy for the rapid construction of carbamates under mild conditions. The reaction proceeds via sequential oxidation of isocyanide to isocyanate and nucleo­philic addition of alcohols to isocyanate to afford the carbamates in high yields.

Supporting Information

 
  • References and Notes

    • 1a For a comprehensive review on organic carbamates, see: Adams P. Baron FA. Chem. Rev. 1965; 65: 567
    • 1b Aresta M. Quaranta F. In Proceedings of the International Conference on Carbon Dioxide Utilization, Bari, Italy, 1993 . Department of Chemistry, University of Bari; Bari: 1993: 63-77 ; and references cited therein
    • 1c Babad H. Zeiler AG. Chem. Rev. 1973; 73: 75
    • 1d Rossi L. In Science of Synthesis: Houben-Weyl Method of Molecular Transformation . Vol. 18. Knight JC. Thieme; Stuttgart: 2005: 461-648
    • 1e Ghosh AK. Brindisi M. J. Med. Chem. 2015; 58: 2895

      For selected examples, see:
    • 2a Feroci M. Orsini M. Rossi L. Sotgiu G. Inesi A. J. Org. Chem. 2007; 72: 200 ; and references cited therein
    • 2b Vijay Kumar S. Ma D. J. Org. Chem. 2018; 83: 2706

      For selected examples, see:
    • 3a Engels H.-W. Pirkl H.-G. Albers R. Albach RW. Krause J. Hoffmann A. Casselmann H. Dormish J. Angew. Chem. Int. Ed. 2013; 52: 9422
    • 3b Six C. Richter F. Isocyanates, Organic. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim: 2003
    • 3c Storace L. Anzalone L. Confalone PN. Davis WP. Fortunak JM. Giangiordano M. Haley JJ. Jr. Kamholz K. Li H.-Y. Ma P. Nugent WA. Parsons RL. Jr. Sheeran PJ. Silverman CE. Waltermire RE. Wood CC. Org. Process Res. Dev. 2002; 6: 54
    • 4a Wallis ES. Lane JF. Org. React. 1949; 3: 267
    • 4b Keillor JW. Huang X. Org. Synth. 2002; 78: 234
    • 5a Smith PA. S. Org. React. 1946; 3: 337
    • 5b Lebel H. Leogane O. Org. Lett. 2006; 8: 5717
    • 6a Yale HL. Chem. Rev. 1943; 33: 209
    • 6b Dubé P. Nathel NF. Vetelino M. Couturier M. Aboussafy CL. Pichette S. Jorgensen ML. Hardink M. Org. Lett. 2009; 11: 5622
  • 7 Wolff H. Org. React. 1946; 3: 307
    • 8a Yuan G. Qi C. Wu W. Jiang H. Curr. Opin. Green Sustain. Chem. 2017; 3: 22
    • 8b Liu Q. Wu L. Jackstell R. Beller M. Nat. Commun. 2015; 6: 5933
    • 8c Yang Z.-Z. He L.-N. Gao J. Liu A.-H. Yu B. Energy Environ. Sci. 2012; 5: 6602
    • 8d Quaranta E. Aresta M. The Chemistry of N–CO2 Bonds: Synthesis of Carbamic Acids and their Derivatives, Isocyanates and Ureas. In Carbon Dioxide as Chemical Feedstock. Aresta M. Wiley-VCH; Weinheim: 2010: 121-167
    • 8e Dell’Amico DB. Calderazzo F. Labella L. Marchetti F. Pampaloni G. Chem. Rev. 2003; 103: 3857
    • 9a Germain N. Müller I. Hanauer M. Paciello RA. Baumann R. Trapp O. Schaub T. ChemSusChem 2016; 9: 1586
    • 9b Heyn RH. Jacobs I. Carr RH. CO2 Chemistry . In Advances in Inorganic Chemistry . Vol. 66. Aresta M. van Eldik R. Academic Press; Boca Raton, FL: 2014: 83
    • 9c Shi F. Deng Y. SiMa T. Peng J. Gu Y. Qiao B. Angew. Chem. Int. Ed. 2003; 42: 3257
    • 9d Ren Y. Rousseaux SA. L. J. Org. Chem. 2018; 83: 913
    • 10a Van Leusen D. Van Leusen AM. Org. React. 2001; 57: 417
    • 10b Ramana Reddy VV. Synlett 2005; 363
    • 10c Kaur T. Wadhwa P. Sharma A. RSC Adv. 2011; 1: 100

      For selected examples, see:
    • 11a Lingaswamy K. Mohan D. Radha Krishna P. Lakshmi Prapurna Y. Synlett 2016; 27: 1693
    • 11b Lingaswamy K. Radha Krishna P. Lakshmi Prapurna Y. Synth. Commun. 2016; 46: 1275
    • 11c Lingaswamy K. Radha Krishna P. Lakshmi Prapurna Y. Adv. Synth. Catal. 2016; 358: 3863
    • 11d Naresh P. Radha Krishna P. Lakshmi Prapurna Y. Synth. Commun. 2017; 47: 1239
  • 12 Lingaswamy K. Radha Krishna P. Lakshmi Prapurna Y. Org. Lett. 2017; 19: 2580
  • 13 Zhang L. Xiao P. Guan X. Huang Z. Zhang J. Bi X. Org. Biomol. Chem. 2017; 15: 1580
  • 14 Le HV. Ganem B. Tetrahedron Lett. 2014; 55: 2003

    • Br2-DMSO:
    • 15a Johnson HW. Jr. Daughheter PH. Jr. J. Org. Chem. 1964; 29: 246

    • Acid-DMSO:
    • 15b Martin D. Weise A. Angew. Chem., Int. Ed. Engl. 1967; 6: 168
  • 16 General Experimental Procedure (Scheme 2, 3a) A mixture of alcohol 1 (0.032 g, 1.0 mmol), TosMIC (2, 0.19 g, 1.0 mmol), and iodine (0.15 g, 0.6 mmol) was stirred in DMSO (2 mL) at room temperature for 15–20 min. After the reaction was complete, the mixture was quenched with a cold saturated aqueous Na2S2O3(2 × 20 mL) solution. Then the solution was extracted with EtOAc (2 × 20 mL). The combined organic layers were dried with anhydrous Na2SO4, and the solvent was removed under reduced pressure. The resulting crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate, 10:3) to afford 3a (0.22 g, 93% yield). Methyl (Tosylmethyl)carbamate (3a) The general procedure was followed. White solid, mp 142–144 °C. Yield 93% (0.22 g). 1H NMR (300 MHz, CDCl3): δ = 7.80 (d, J = 8.2 Hz, 2 H), 7.36 (d, J = 8.0 Hz, 2 H), 5.78 (s, 1 H), 4.56 (d, J = 6.9 Hz, 2 H), 3.57 (s, 3 H), 2.45 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 155.7, 145.4, 133.7, 129.9, 128.9, 62.5, 52.9, 21.7. ESI-MS: 266 [M + Na]+. HRMS: m/z calcd for C10H13O4NNaS [M + Na]+: 266.0457; found: 266.0464.