Synlett 2018; 29(12): 1617-1621
DOI: 10.1055/s-0037-1610178
letter
© Georg Thieme Verlag Stuttgart · New York

Biomimetic Total Synthesis of Scabellone B

Tao Yu
Department of Chemistry and Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi’an 710127, P. R. of China   Email: xiangdonghu@nwu.edu.cn
,
Xin Shu
Department of Chemistry and Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi’an 710127, P. R. of China   Email: xiangdonghu@nwu.edu.cn
,
Kewu Yang
Department of Chemistry and Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi’an 710127, P. R. of China   Email: xiangdonghu@nwu.edu.cn
,
Xiangdong Hu*
Department of Chemistry and Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi’an 710127, P. R. of China   Email: xiangdonghu@nwu.edu.cn
› Author Affiliations

The project is supported by the National Natural Science Foundation of China (21772153, 21642006), the Key Science and Technology ­Innovation Team of Shaanxi Province (2017KCT-37), and the China Postdoctoral Science Foundation (334100041).

Further Information

Publication History

Received: 03 March 2018

Accepted after revision: 15 May 2018

Publication Date:
18 June 2018 (online)


Abstract

A biomimetic total synthesis of scabellone B is described. Through sequential regioselective introduction of a geranyl group by means of silyl protection, oxidative dimerization, and biomimetic oxo-6π electrocyclization with good cyclization selectivity, a biomimetic ­approach to scabellone B was achieved in five steps and 32% overall yield.

Supporting Information

 
  • References and Notes

  • 1 Chan ST. S. Pearce AN. Januario AH. Page MJ. Kaiser M. McLaughlin RJ. Harper JL. Webb VL. Barker D. Copp BR. J. Org. Chem. 2011; 76: 9151
    • 2a Pearce AN. Chia EW. Berridge MV. Clark GR. Harper JL. Larsen L. Maas EW. Page MJ. Perry NB. Webb VL. Copp BR. J. Nat. Prod. 2007; 70: 936
    • 2b Pearce AN. Chia EW. Berridge MV. Maas EW. Page MJ. Harper JL. Webb VL. Copp BR. Tetrahedron 2008; 64: 5748
    • 2c Appleton DR. Chuen CS. Berridge MV. Webb VL. Copp BR. J. Org. Chem. 2009; 74: 9195
    • 2d Liew LP. P. Kaiser M. Copp BR. Bioorg. Med. Chem. Lett. 2013; 23: 452
    • 2e Liew LP. P. Pearce AN. Kaiser M. Copp BR. Eur. J. Med. Chem. 2013; 69: 22
    • 2f Harper J. Khalil I. Shaw L. Bourguet-Kondracki M.-L. Dubois J. Valentin A. Barker D. Copp BR. Mar. Drugs 2015; 13: 5102
    • 2g Cadelis M. Bourguet-Kondracki M.-L. Dubois J. Valentin A. Barker D. Copp BR. Bioorg. Med. Chem. 2016; 24: 3102
    • 2h Cadelis MM. Bourguet-Kondracki M.-L. Dubois J. Kaiser M. Brunel JM. Barker D. Copp BR. Bioorg. Med. Chem. 2017; 25: 4433
    • 3a Chan ST. S. Pullar MA. Khalil IM. Allouche E. Barker D. Copp BR. Tetrahedron Lett. 2015; 56: 1486
    • 3b Lim DS. W. Anderson EA. Synthesis 2012; 44: 983
  • 4 Yang X. Gulder TA. M. Reichert M. Tang C. Ke C. Ye Y. Bringmann G. Tetrahedron 2007; 63: 4688
    • 5a Joseph-Nathan P. Hernández JD. Román LU. García EG. Mendoza V. Mendoza S. Phytochemistry 1982; 21: 1129
    • 5b Georgantea P. Ioannou E. Vagias C. Roussis V. Tetrahedron Lett. 2013; 54: 6920
  • 6 Carney JR. Scheuer PJ. Tetrahedron Lett. 1993; 34: 3727
    • 7a Anderson JC. Denton RM. Wilson C. Org. Lett. 2005; 7: 123
    • 7b Smith MJ. Nawrat CC. Moody CJ. Org. Lett. 2011; 13: 3396
    • 7c Gao S. Hu X. Org. Chem. Front. 2017; 4: 1493
    • 8a Li X. Yang J. Kozlowski MC. Org. Lett. 2001; 3: 1137
    • 8b Takeya T. Kondo H. Otsuka T. Tomita K. Okamoto I. Tamura O. Org. Lett. 2007; 9: 2807
    • 8c Love BE. Bonner-Stewart J. Forrest LA. Synlett 2009; 813
    • 8d Love BE. Bonner-Stewart J. Forrest LA. Tetrahedron 2009; 50: 5050
    • 8e Neelamegam R. Palatnik MT. Fraser-Rini J. Slifstein M. Abi-Dargham A. Easwaramoorthy B. Tetrahedron Lett. 2010; 51: 2497
    • 8f Love BE. Duffy BC. Simmons AL. Tetrahedron 2014; 55: 1994
    • 8g Romaine IM. Sulikowski GA. Tetrahedron 2015; 56: 3617
    • 8h Krylov IB. Paveliev SA. Shelimov BN. Lokshin BV. Garbuzova IA. Tafeenko VA. Chernyshev VV. Budnikov AS. Nikishin GI. Terent’ev AO. Org. Chem. Front. 2017; 4: 1947
    • 9a Linn BO. Shunk CH. Wong EL. Folkers K. J. Am. Chem. Soc. 1963; 85: 239
    • 9b Schudel P. Mayer H. Metzger J. Rüegg R. Isler O. Helv. Chim. Acta 1963; 46: 2517
    • 9c Inoue K. Shiobara Y. Nayeshiro H. Inouye H. Wilson G. Zenk MH. Phytochemistry 1984; 23: 307
    • 9d Khanna RN. Sharma PK. Thomson RH. J. Chem. Soc., Perkin Trans. 1 1987; 1821
    • 9e Ishibashi M. Ohizumi Y. Cheng JF. Nakamura H. Hirata Y. Sasaki T. Kobayashi J. J. Org. Chem. 1988; 53: 2855
    • 9f Mukai K. Okabe K. Hosose H. J. Org. Chem. 1989; 54: 557
    • 9g Nicolaou KC. Sasmal PK. Xu H. J. Am. Chem. Soc. 2004; 126: 5493
    • 9h Lee YR. Choi JH. Yoon SH. Tetrahedron Lett. 2005; 46: 7539
    • 9i Lumb J.-P. Trauner D. Org. Lett. 2005; 7: 5865
    • 9j Habonimana P. Claessens S. De Kimpe N. Synlett 2006; 2472
    • 9k Carbone A. Lucas CL. Moody CJ. J. Org. Chem. 2012; 77: 9179
    • 9l Zeng H. Duan D. Tang B. Synlett 2015; 26: 927
  • 10 Scabellone BEt3N (47 mg, 0.54 mmol) was added to solution of biquinone 6 (100 mg, 0.18 mmol) in CH2Cl2 (5 mL), and the mixture was stirred for 5 min. The mixture was then concentrated by vacuum and purified by column chromatography (silica gel) to give a purple oil; yield: 95 mg (95%); Rf = 0.3 (EtOAc–PE, 1:5). IR (CCl4): 3467, 2922, 1684, 1594, 1221, 750 cm–1. 1H NMR (400 MHz, CDCl3): δ = 6.40 (s, 1 H), 6.00 (d, J = 8 Hz, 1 H), 5.79 (s, 1 H), 5.50 (s, 1 H), 5.27 (d, J = 8 Hz, 1 H), 5.05 (m, 1 H), 5.00 (t, J = 4 Hz, 1 H), 4.93 (t, J = 4 Hz, 1 H), 3.88 (s, 3 H), 3.79 (s, 3 H), 3.57 (m, 1 H), 3.36 (dd, J = 12 Hz, 1 H), 1.94–1.98 (m, 4 H), 1.92–1.94 (m, 2 H), 1.92 (s, 3 H), 1.85–1.87 (m, 2 H), 1.62 (s, 3 H), 1.59 (s, 3 H), 1.56 (s, 3 H), 1.50 (s, 3 H), 1.49 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 182.7, 178.9, 158.0, 151.5, 150.2, 144.5, 139.3, 137.7, 137.2, 131.9, 131.8, 130.9, 127.0, 124.4, 124.0, 123.7, 117.0, 111.2, 107.4, 98.5, 67.8, 56.3, 56.2, 40.0, 39.9, 26.7, 26.5, 26.3, 25.7, 25.7, 17.7, 17.6, 17.4, 16.7. HRMS (ESI+): m/z [M + H]+ calcd for C34H43O6, 547.3054; found: 547.3041.