Synlett 2018; 29(12): 1644-1648
DOI: 10.1055/s-0037-1610177
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of a Water-Soluble Ruthenium Complex and Its Catalytic Activity for Acceptorless Alcohol Dehydrogenation in Aqueous Medium

Anita Bhatia
Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra-136119, Haryana, India   Email: msenthil@nitkkr.ac.in
,
Senthilkumar Muthaiah*
Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra-136119, Haryana, India   Email: msenthil@nitkkr.ac.in
› Author Affiliations
The authors acknowledge financial support from the Science and ­Engineering Research Board, India, in the form of a Start-Up Research Grant (Young Scientists, No. 58/FT /C5-092/2014). A.B. thanks DST, WOS-A of India for a fellowship (SR/WOS-A/CS-1035/2015).
Further Information

Publication History

Received: 11 April 2018

Accepted after revision: 10 May 2018

Publication Date:
18 June 2018 (online)


Abstract

The synthesis of a ruthenium complex bearing a PN-chelating ligand is described. The complex, in the presence of KOH, enabled the synthesis of ketones from secondary alcohols in the absence of a hydrogen acceptor in aqueous medium. This synthetic protocol, which uses water as the medium, is green and has a high atom economy as it avoids the use of an acceptor and produces hydrogen as the sole ­byproduct. Mechanistic investigations revealed that the catalytic cycle involves a phosphine dissociative pathway.

Supporting Information

 
  • References and Notes

    • 2a Highet RJ. Wildman WC. J. Am. Chem. Soc. 1955; 77: 4399
    • 2b Modern Oxidation Methods . Bäckvall J.-E. Wiley-VCH; Weinheim: 2004: 193
    • 2c Stevens RV. Chapman KT. Weller HN. J. Org. Chem. 1980; 45: 2030
    • 3a Sheldon RA. Kochi JK. Metal-Catalyzed Oxidations of Organic Compounds . Academic Press; New York: 1981
    • 3b Oded K. Musa S. Gelman D. Blum J. Catal. Commun. 2012; 20: 68
    • 3c Li H. Lu G. Jiang J. Huang F. Wang Z.-X. Organometallics 2011; 30: 2349
    • 3d Fujita K.-i. Yoshida T. Imori Y. Yamaguchi R. Org. Lett. 2011; 13: 2278
    • 3e Yamaguchi R. Ikeda C. Takahashi Y. Fujita K.-i. J. Am. Chem. Soc. 2009; 131: 8410
    • 3f Fujita K.-i. Tanino N. Yamaguchi R. Org. Lett. 2007; 9: 109
    • 3g Gu X.-Q. Chen W. Morales-Morales D. Jensen CM. J. Mol. Catal. A: Chem. 2002; 189: 119
    • 4a Murahashi S. Naota T. Ito K. Maeda Y. Taki H. J. Org. Chem. 1987; 52: 4319
    • 4b Bertoli M. Choualeb A. Lough AJ. Moore B. Spasyuk D. Gusev DG. Organometallics 2011; 30: 3479
    • 4c Gunanathan C. Milstein D. Science 2013; 341: 1229712
    • 4d Johnson TC. Morris DJ. Wills M. Chem. Soc. Rev. 2010; 39: 81 ; and references cited therein
    • 4e Vicent C. Gusev DG. ACS Catal. 2016; 6: 3301
    • 4f Wang Z. Pan B. Liu Q. Yue E. Solan GA. Ma Y. Yanping S. Sun W.-H. Catal. Sci. Technol. 2017; 7: 1654
    • 5a Kawahara R. Fujita K.-I. Yamaguchi R. J. Am. Chem. Soc. 2012; 134: 3643
    • 5b Fujita K.-I. Tamura R. Tanaka Y. Yoshida M. Onoda M. Yamguchi R. ACS Catal. 2017; 7: 7226
    • 5c Maenaka Y. Suenobu T. Fukuzumi S. J. Am. Chem. Soc. 2012; 134: 9417
    • 5d Wang X. Wang C. Liu Y. Xiao J. Green Chem. 2016; 18: 4605
    • 6a Balaraman E. Khaskin E. Leitus G. Milstein D. Nat. Chem. 2013; 5: 122
    • 6b Sponholz P. Mellmann D. Cordes C. Alsabeh PG. Li B. Li Y. Nielsen M. Junge H. Dixneuf P. Beller M. ChemSusChem 2014; 7: 2419
    • 6c Choi J.-H. Heim LE. Ahrens M. Prechtl MH. G. Dalton Trans. 2014; 43: 17248
    • 6d Zhang L. Nguyen DH. Raffa G. Trivelli X. Capet F. Desset S. Paul S. Dumeignil F. Gauvin RM. ChemSusChem 2016; 9: 1413
  • 7 Bhatia A. Muthaiah S. ChemistrySelect 2018; 3: 3737
    • 8a Pinault N. Bruce DW. Coord. Chem. Rev. 2003; 241: 1
    • 8b Verspui G. Feiken J. Papadogianakis G. Sheldon RA. J. Mol. Catal. A: Chem. 1999; 146: 299
    • 8c Herrmann WA. Kohlpaintner CW. Angew. Chem. Int. Ed. Engl. 1993; 32: 1524
    • 8d Mika LT. Orha L. van Driessche E. Garton R. Zih-Perényi K. Horváth IT. Organometallics 2013; 32: 5326
    • 8e Ding H. Bunn BB. Hanson BE. Inorg. Synth. 1998; 32: 29
    • 8f Verkade JG. Coord. Chem. Rev. 1994; 137: 233
    • 8g Zablocka M. Hameau AL. Caminade A.-M. Majoral J.-P. Adv. Synth. Catal. 2010; 352: 2341
    • 8h McAuliffe CA. In Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties and Applications of Coordination Compounds . Wilkinson G. Gillard RD. McCleverty J. Pergamon; Oxford: 1987. Chap. 14 1016
    • 8i Siele VI. J. Heterocycl. Chem. 1997; 14: 337
    • 8j Daigle DJ. Pepperman AB. Jr. Vail SL. J. Heterocycl. Chem. 1974; 11: 407
    • 8k Daigle DJ. Inorg. Synth. 1998; 32: 40
    • 9a Bravo J. Bolaño S. Gonsalvi L. Peruzzini M. Coord. Chem. Rev. 2010; 254: 555
    • 9b Phillips AD. Gonsalvi L. Romerosa A. Vizza F. Peruzzini M. Coord. Chem. Rev. 2004; 248: 955
    • 9c Mathew J. Thomas T. Suresh CH. Inorg. Chem. 2007; 46: 10800
    • 9d Navech J. Kraemer R. Majoral J.-P. Tetrahedron Lett. 1980; 21: 1449
    • 9e Benhammou M. Kraemer R. Germa H. Majoral J.-P. Navech J. Phosphorus, Sulfur Silicon Relat. Elem. 1982; 14: 105
    • 9f Abu-Omar MM. Espenson JH. J. Am. Chem. Soc. 1995; 117: 272
    • 9g Muller A. Otto S. Roodt A. Dalton Trans. 2008; 650
  • 10 Gonsalvi L. Guerriero A. Hapiot F. Krogstad DA. Monflier E. Reginat G. Peruzzini M. Pure Appl. Chem. 2013; 85: 385 ; and references cited therein
    • 11a Scalambra F. Serrano-Ruiz M. Romerosa R. Dalton Trans. 2017; 46: 5864
    • 11b Mena-Cruz A. Serrano-Ruiz M. Lorenzo-Luis P. Romerosa A. Kathó Á. Joó F. Aguilera-Sáez LM. J. Mol. Catal. A: Chem. 2016; 411: 27
    • 11c Serrano-Ruiz M. Lorenzo-Luis P. Romerosa A. Mena-Cruz A. Dalton Trans. 2013; 42: 7622
    • 12a Cadierno V. Francos J. Gimeno J. Chem. Eur. J. 2008; 14: 6601
    • 12b Lee W.-C. Sears JM. Enow RA. Eads K. Krogstad DA. Frost BJ. Inorg. Chem. 2013; 52: 1737
    • 12c Díaz-Álvarez AE. Crochet P. Zablocka M. Duhayon C. Cadierno V. Gimeno J. Majoral JP. Adv. Synth. Catal. 2006; 348: 1671
    • 13a Bosquain SS. Dorcier A. Dyson PJ. Erlandsson M. Gonsalvi L. Laurenczy G. Peruzzini M. Appl. Organomet. Chem. 2007; 21: 947
    • 13b Jumde VR. Gonsalvi L. Guerriero A. Peruzzini M. Taddei M. Eur. J. Org. Chem. 2015; 1829
  • 14 Krogstad DA. Ellis GS. Gunderson AK. Hammrich AJ. Rudolf JW. Halfen JA. Polyhedron 2007; 26: 4093
  • 15 [RuCl2(PPh3)2(2-PyCH2PTA)]·Br (2) In an oven-dried Schlenk flask, [2-PyCH2PTA]·Br (1; 0.329 g, 1 mmol) was added to a solution of RuCl2(PPh3)3 (0.881 g, 1 mmol) in toluene (~50 mL). The resulting mixture was refluxed for ~12 h then cooled and filtered. The brown residue was washed with hexane and dried under vacuo to obtain the analytically pure product as a free flowing brown solid; yield: 0.860 g (90%). 1H NMR (300 MHz, CDCl3, 25 °C): δ = 2.47 (d, J = 16 Hz, 2 H, PCHAHBN), 2.88 (d, J = 16 Hz, 2 H, PCHAHBN), 2.98 (d, J = 12 Hz, 2 H, PCH2N+), 3.11 (s, 1 H, NCHAHBN), 3.55 (s, 1 H, NCHAHBN), 4.31 (s, 2 H, N+CH2Cpy), 5.09 (d, J = 12 Hz, 2 H, N+CHAHBN), 5.24 (d, J = 12 Hz, 2 H, N+CHAHBN), 7.16–7.21 (m, 30 H, PPh3; 1 H, Hpy), 7.67 (t, J = 8 Hz, 1 H, Hpy), 8.51 (d, J = Hz, 2 H, Hpy). 13C{1H} NMR (300 MHz, DMSO-d 6, 25 °C): δ = 49.88 (d, J P–C = 52 Hz, PCH2N); 54.09 (d, J PC = 52 Hz, PCH2N+); 68.42 (s, pyCH2N+); 72.03 (s, NCH2N); 73.36 (s, NCH2N+); 128.68 (s, Cpy); 131.41 (s, Cpy); 133.17 (d, J PC = 36 Hz, CPh); 136.47 (s, Cpy); 141.11 (s, CPh); 144.99 (s, Cpy); 151.83 (s, Cpy). 31P{1H} NMR (300 MHz, DMSO-d 6): δ = –26.68 (t, J P–P = 36 Hz, Ru-PTA), 29.22 (d, J P–P = 36 Hz, Ru-PPh3). ESI-MS (+ve): m/z = 945.31 [M]+. Anal. Calcd for C48H48BrCl2N4P3Ru: C 56.21, H 4.72, N 5.46. Found: C 56.17, H 4.70, N 5.41.
  • 16 Dehydrogenation of Alcohols; General Procedure A Schlenk tube was charged with Ru complex 2 (5 mol%), base (15 mol%), the appropriate alcohol (5 mmol), and H2O (1.0 mL), and the mixture was stirred under reflux for 48 h. When the reaction was complete, the product was extracted with CH2Cl2. All the CH2Cl2 was evaporated under vacuo, and the product ketone or aldehyde was isolated from the crude mixture by column chromatography (silica gel, hexane–EtOAc). The formation and purity of all the products were confirmed by comparing their 1H NMR spectra with the report values.
    • 17a Yang L.-C. Ishida T. Yamakawa T. Shinoda S. J. Mol. Catal. A: Chem. 1996; 108: 87
    • 17b Johansson AJ. Zuidema E. Bolm C. Chem. Eur. J. 2010; 16: 13487
    • 17c Muthaiah S. Hong SH. Adv. Synth. Catal. 2012; 354: 3045
    • 17d Pandey P. Dutta I. Bera JK. Proc. Natl. Acad. Sci., India, Sect. A 2016; 86: 561 ; and references cited therein
    • 17e Aranyos A. Csjernyik G. Szabó KJ. Bäckvall J.-E. Chem. Commun. 1999; 351