Synlett 2018; 29(12): 1654-1658
DOI: 10.1055/s-0037-1610145
letter
© Georg Thieme Verlag Stuttgart · New York

Iodine-Mediated Vicinal Difunctionalization of Alkenes: A Convenient Method for Building C–Se and C–S Bonds

Junxing Wang
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. of China   Email: jieyan87@zjut.edu.cn
,
Weijian Sheng
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. of China   Email: jieyan87@zjut.edu.cn
,
Jie Yan*
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. of China   Email: jieyan87@zjut.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 06 March 2018

Accepted after revision: 22 April 2018

Publication Date:
30 May 2018 (online)


Abstract

A novel I2-mediated procedure is developed for building C–Se and C–S bonds simultaneously from alkenes, diselenides and sodium dithiocarbamates. This difunctionalization of alkenes is carried out in the presence of I2 and air, and exhibits good characteristics such as being transition-metal-free, requiring mild reaction conditions and simple procedures. The approach provides the product β-selanylethyl dithiocarbamates with high regioselectivity and in good yields. A plausible electrophilic addition mechanism is hypothesized.

 
  • References and Notes

    • 1a Wirth T. Tetrahedron 1999; 55: 1
    • 1b Wirth T. Angew. Chem. Int. Ed. 2000; 39: 3740
    • 1c Freudendahl DM. Shahzad SA. Wirth T. Eur. J. Org. Chem. 2009; 1649
    • 1d Mukherjee AJ. Zade SS. Singh HB. Sunoj RB. Chem. Rev. 2010; 110: 4357
    • 1e Letavayova L. Vlckova V. Brozmanova J. Toxicology 2006; 227: 1
    • 1f Erkekoglu P. Rachidi W. Yuzugullu OG. Giray B. Favier A. Ozturk M. Hincal F. Toxicol. Appl. Pharmacol. 2010; 248: 52
    • 1g Zeni G. Stracke MP. Nogueira CW. Braga AL. Menezes PH. Stefani HA. Org. Lett. 2004; 6: 1135
    • 1h Erkekoglu P. Giray B. Rachidi W. Hininger-Favier I. Roussel A.-M. Favier A. Hincal F. Environ. Toxicol. 2014; 29: 98
    • 1i Wallace K. Kelsey KT. Schned A. Morris JS. Andrew AS. Karagas MR. Cancer Prev. Res. 2009; 2: 70
    • 1j Erkekoglu P. Chao M.-W. Ye W. Ge J. Trudel LJ. Skipper PL. Kocer-Gumusel B. Engelward BP. Wogan GN. Tannenbaum SR. Food Chem. Toxicol. 2014; 72: 98
    • 1k Noro M. Fujita S. Wada T. Org. Lett. 2013; 15: 5948
    • 1l Zhang A. Sun J. Lin C. Hu X. Liu W. J. Agric. Food Chem. 2014; 62: 1477
    • 1m He H. Wang Z.-M. Li X.-J. Yu Q. Wang Z.-W. Tetrahedron 2016; 72: 7594
    • 1n Zhu Y.-Y. Chen T.-Q. Li S. Shimada S. Han L.-B. J. Am. Chem. Soc. 2016; 138: 5825
    • 1o Jesberger M. Davis TP. Barner L. Synthesis 2003; 1929
    • 1p Huang PJ. Wang F. Liu J. Anal. Chem. 2015; 87: 6890
    • 1q Lauer AM. Mahmud F. Wu J. J. Am. Chem. Soc. 2011; 133: 9119
    • 1r Gao Y.-X. Tang G. Cao Y. Zhao Y.-F. Synthesis 2009; 1081
    • 2a Romero RM. Woste TH. Muniz K. Chem. Asian J. 2014; 9: 972
    • 2b Beccalli EM. Broggini G. Gazzola S. Mazza A. Org. Biomol. Chem. 2014; 12: 6767
    • 2c Zhao B. Peng X. Zhu Y. Ramirez TA. Cornwall RG. Shi Y. J. Am. Chem. Soc. 2011; 133: 20890
    • 2d Zhang H.-W. Song Y.-C. Zhao J.-B. Zhang JP. Zhang Q. Angew. Chem. Int. Ed. 2014; 53: 11079
    • 2e Chen C. Hecht MB. Kavara A. Brennessel WW. Mercado BQ. Weix DJ. Holland PL. J. Am. Chem. Soc. 2015; 137: 13244
    • 3a Back TG. In Organoselenium Chemistry . Liotta D. Wiley; New York: 1987
    • 3b Paulmier C. Selenium Reagents and Intermediates in Organic Synthesis. In Organic Chemistry Series. Pergamon Press; Oxford U. K.: 1986
    • 3c Schmid GH. Garratt DG. In The Chemistry of Double-bonded Functional Groups. Supplement A . Patia S. Wiley; New York: 1977
    • 3d Wirth T. Organoselenium Chemistry: Synthesis and Reactions. Wiley-VCH; Weinheim: 2012
    • 3e Conner ES. Crocker KE. Fernando RG. Fronczek FR. Stanley GG. Ragains JR. Org. Lett. 2013; 15: 5558
    • 4a Toshimitsu A. Nakano K. Mukai T. Tamao K. J. Am. Chem. Soc. 1996; 118: 2756
    • 4b Tiecco M. Testaferri L. Santi C. Tomassini C. Marini F. Bagnoli L. Temperini A. Tetrahedron: Asymmetry 2002; 13: 429
    • 4c Tang E. Wang W.-L. Zhao Y.-J. Zhang M. Dai X. Org. Lett. 2016; 18: 176
    • 4d Sun K. Wang X. Lv Y.-H. Li G. Jiao H.-Z. Dai C.-W. Li Y.-Y. Zhang C. Liu L. Chem. Commun. 2016; 8471
    • 4e Toshimitsu A. Hayashi G. Terao K. Uemura S. J. Chem. Soc., Perkin Trans. 1 1986; 343
    • 4f Wang X.-L. Li H.-J. Zhu M. Yan J. RSC Adv. 2017; 7: 15709
    • 5a Hasser A. Amarasekara AS. Tetrahedron Lett. 1987; 28: 5185
    • 5b Tiecco M. Testaferri L. Santi C. Tomassini C. Marini F. Bagnoli L. Temperini A. Angew. Chem. Int. Ed. 2003; 42: 3131
    • 5c Tiecco M. Testaferri L. Santi C. Tomassini C. Santoro S. Marini F. Bagnoli L. Temperini A. Tetrahedron 2007; 63: 12373
    • 5d Tingoli M. Tiecco M. Chianelli D. Balducci R. Temperini A. J. Org. Chem. 1991; 56: 6809
    • 6a Toshimitsu A. Aoai T. Owada H. Uemura S. Okano M. Tetrahedron 1985; 41: 5301
    • 6b Tingoli M. Diana R. Panunz B. Tetrahedron Lett. 2006; 47: 7529
    • 6c Tiecco M. Testaferri L. Temperini A. Synlett 2001; 7167
    • 6d Berlin S. Ericsson C. Engman L. J. Org. Chem. 2003; 68: 8386
    • 6e Movassagh B. Farshbaf S. Synthesis 2010; 33
    • 6f Ganesh V. Srinivasan C. Synthesis 2009; 3267
    • 7a Taniguchi N. J. Org. Chem. 2006; 71: 7874
    • 7b Pandey G. Rao VJ. Bhalero UT. J. Chem. Soc., Chem. Commun. 1989; 416
    • 7c Tiecco M. Testaferri L. Tingoli M. Bagnoli L. Marini F. Santi C. Temperini A. Gazz. Chim. Ital. 1996; 126: 635
    • 7d Das JP. Roy UK. Roy S. Organometallics 2005; 24: 6136
    • 7e Yu L. Chen B. Huang X. Tetrahedron Lett. 2007; 48: 925
    • 7f Shi M. Wang B.-Y. Li J. Eur. J. Org. Chem. 2005; 759
    • 7g Shi H.-W. Yu C. Zhu M. Yan J. J. Organomet. Chem. 2015; 776: 117
    • 8a Tiecco M. Testaferri L. Tingoli M. Bartoli D. Balducci R. J. Org. Chem. 1990; 55: 429
    • 8b Yoshshida M. Sasage S. Kawamura K. Suzuki T. Kamigata N. Bull. Chem. Soc. Jpn. 1991; 64: 416
    • 8c Yu C. Shi H.-W. Yan J. ARKIVOC 2015; (v): 266
    • 8d Mironov YV. Sherman AA. Nifantiev NE. Tetrahedron Lett. 2004; 45: 9107
    • 8e Vieira AA. Azeredo JB. Godoi M. Santi C. da Silva Junior EN. Braga AL. J. Org. Chem. 2015; 80: 2120
    • 9a Wang H. Huang D. Cheng D. Li L. Shi Y. Org. Lett. 2011; 13: 1650
    • 9b Gao X. Pan X. Gao J. Jiang H. Yuan G. Li Y. Org. Lett. 2015; 17: 1038
    • 9c Yang F.-L. Wang F.-X. Wang T.-T. Wang Y.-J. Tian S.-K. Chem. Commun. 2014; 2111
    • 9d Yu J. Gao C. Song Z. Yang H. Fu H. Org. Biomol. Chem. 2015; 13: 4846
    • 9e Guan H. Wang H. Huang D. Shi Y. Tetrahedron 2012; 68: 2728
    • 10a Wang H. Lu Q. Qian C. Liu C. Liu W. Chen K. Lei A. Angew. Chem. Int. Ed. 2016; 55: 1094
    • 10b Keshali T. Yadav VK. Srivastava VP. Yadav LD. S. Green Chem. 2014; 16: 3986
    • 10c Xi H. Deng B. Zong Z. Liu S. Li Z. Org. Lett. 2015; 17: 1180
    • 10d Yadav VK. Srivastava VP. Yadav LD. S. Tetrahedron Lett. 2015; 56: 2892
    • 10e Kamal A. Reddy DR. J. Mol. Catal. A: Chem. 2007; 272: 26
    • 10f Surendra K. Krishnavine NS. Sridhar R. Rao KR. J. Org. Chem. 2006; 71: 5819
    • 11a Taniguchi N. J. Org. Chem. 2006; 71: 7874
    • 11b Muangkaew C. Katrum P. Kanchanarugee P. Pohmakotr M. Reutrakul V. Soorukram D. Jaipetch T. Kuhakarn C. Tetrahedron 2013; 69: 8847
    • 11c Katrum P. Chiampanichayakul S. Korworapan K. Pohmakotr M. Reutrakul V. Jaipetch T. Kuhakarn C. Eur. J. Org. Chem. 2010; 5633
    • 11d Yadav LD. S. Awasthi C. Tetrahedron Lett. 2009; 50: 3801
    • 12a Zheng Y. He Y. Rong G. Zhang X. Weng Y. Dong K. Xu X. Mao J. Org. Lett. 2015; 17: 5444
    • 12b Cui H. Liu X. Wei W. Yang D. He C. Zhang T. Wang H. J. Org. Chem. 2016; 81: 2252
    • 12c Li L. Wang H. Huang D. Shi Y. Tetrahedron 2012; 68: 9853
    • 12d Li L. Li Z. Huang D. Wang H. Shi Y. RSC Adv. 2013; 3: 4523
    • 13a Usugi S.-i. Yorimitsu H. Shinokubo H. Oshima K. Org. Lett. 2004; 6: 601
    • 13b Matsumoto K. Fujie S. Suga S. Nokami T. Yushida J.-i. Chem. Commun. 2009; 5448
    • 13c Caserio MC. Fisher CL. Kim JK. J. Org. Chem. 1985; 50: 4390
    • 13d Wang X.-R. Chen F. Tetrahedron 2011; 67: 4547
    • 13e Li H.-Y. Shan C.-C. Tung C.-H. Xu Z.-H. Chem. Sci. 2017; 8: 2610
    • 14a Dohi T. Kita Y. Chem. Commun. 2009; 2073
    • 14b Uyanik M. Suzuki D. Yasui T. Ishihara K. Angew. Chem. Int. Ed. 2011; 50: 5331
    • 14c Uyanik M. Okamoto H. Yasui T. Ishihara K. Science 2010; 328: 1376
    • 14d Ge W. Wey Y. Green Chem. 2012; 14: 2066
    • 14e Duan Y.-N. Zhang Z. Zhang C. Org. Lett. 2016; 18: 6176
    • 14f Azeredo JB. Godoi M. Martins GM. Silveira CC. Braga AL. J. Org. Chem. 2014; 79: 4125
    • 14g Ambethkar S. Vellimalai M. Padmini V. Bhuvanesh N. New J. Chem. 2017; 41: 75
    • 14h Xu D.-D. Sun W.-W. Xie Y.-L. Liu J.-K. Liu B. Zhou Y.-B. Wu B. J. Org. Chem. 2016; 81: 11081
  • 15 Difunctionalizations of Alkenes Mediated by I2; Typical Procedure In a mixed solvent H2O/EtOH (1:1, 3.0 mL), alkene 1 (0.24 mmol), diselenide 2 (0.10 mmol), sodium dithiocarbamate 3 (0.6 mmol) and I2 (0.1 mmol) were added successively. The suspension mixture was vigorously stirred at r.t. for 6 h. Upon completion, the reaction was quenched by addition of sat. aq. Na2S2O3 (2 mL) and H2O (5 mL). The mixture was extracted with CH2Cl2 (3 × 5 mL) and the combined organic phase was dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was then purified on a silica gel plate (PE/EtOAc, 6:1) to furnish product 4. 1-Phenyl-2-phenylselanyletheyl Diethylcarbamodithioate (4a): Yield: 74 mg (91%); yellow oil. IR (film): 3057, 2979, 2931, 1485, 1418, 1268, 1206, 736, 694 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.52 (d, J = 3.7 Hz, 2 H), 7.37–7.32 (m, 6 H), 7.25–7.22 (m, 2 H), 5.37 (d, J = 6.3 Hz, 1 H), 4.13–3.92 (m, 2 H), 3.92 (dd, J = 11.9, 4.8 Hz, 1 H), 3.72–3.67 (m, 2 H), 3.48 (dd, J = 11.9, 11.0 Hz, 1 H), 1.30–1.20 (m, 6 H). 13C NMR (125 MHz, CDCl3): δ = 193.6, 138.8, 133.6, 130.0, 128.9, 128.6, 128.0, 127.1, 55.7, 49.3, 46.7, 33.5, 12.6, 11.6. MS (ESI): m/z = 432 [M+23]+. HRMS: m/z [M+23]+ calcd for C19H23NNaS2Se: 432.0335; found: 432.0321. 2-(Phenylselanyl)-1-(p-tolyl)ethyl Diethylcarbamodithioate (4b): Yield: 72 mg (85%); yellow oil. IR (film): 3052, 2976, 2931, 1487, 1417, 1268, 1206, 827, 737, 691 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.56–7.53 (m, 2 H), 7.29–7.22 (m, 5 H), 7.15 (d, J = 5.0 Hz, 2 H), 5.32 (dd, J = 11.2, 4.7 Hz, 1 H), 4.05–3.94 (m, 2 H), 3.93 (dd, J = 11.8, 4.7 Hz, 1 H), 3.72–3.67 (m, 2 H), 3.49 (d, J = 11.5 Hz, 1 H), 2.36 (s, 3 H), 1.29–1.23 (m, 6 H). 13C NMR (125 MHz, CDCl3): δ = 193.7, 137.7, 135.6, 133.6, 129.3, 129.2, 128.8, 128.4, 127.0, 55.3, 49.2, 46.6, 33.4, 21.2, 12.6, 11.6. MS (ESI): m/z = 446 [M+23]+; HRMS (ESI): m/z [M+23]+ calcd for C20H25NNaS2Se: 446.0491; found: 446.0478. 1-(4-Chlorophenyl)-2-phenylselanyletheyl Diethylcarbamo­dithioate (4d): Yield: 149 mg (55%); yellow oil. IR (film): 3054, 2956, 2920, 2849, 1486, 1416, 1269, 1205, 1091, 1011, 829, 735, 690 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.51–7.47 (m, 2 H), 7.29–7.22 (m, 7 H), 5.36–5.30 (m, 1 H), 4.10–3.94 (m, 2 H), 3.87 (dd, J = 10.0, 5.0 Hz, 1 H), 3.71–3.62 (m, 2 H), 3.40 (dd, J = 12.1, 11.0 Hz, 1 H), 1.28–1.23 (m, 6 H). 13C NMR (125 MHz, CDCl3): δ = 193.1, 137.5, 133.7, 130.0, 128.9, 128.7, 127.2, 55.0, 49.4, 46.7, 33.3, 12.6, 11.6; MS (ESI): m/z = 444 [M+1]+; HRMS (ESI): m/z [M+1]+ calcd for C19H23ClNS2Se: 444.0126; found: 444.0098. 1-[2-(Phenylselanyl)indanyl] Diethylcarbamodithioate (4g): Yield: 61 mg (73%); yellow oil. IR (film): 3069, 2973, 2920, 2849, 1485, 1416, 1268, 1205, 909, 732, 690 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.64–7.60 (m, 2 H), 7.42 (t, J = 5.0 Hz, 1 H), 7.32–7.22 (m, 5 H), 7.19 (d, J = 5.0 Hz, 1 H), 5.60 (d, J = 5.0 Hz, 1 H), 4.30–4.24 (m, 1 H), 4.10–4.00 (m, 2 H), 3.70–3.65 (m, 2 H), 3.56 (dd, J = 16.8, 6.5 Hz, 1 H), 3.05 (dd, J = 16.8, 3.1 Hz, 1 H), 1.34–1.30 (m, 6 H). 13C NMR (125 MHz, CDCl3): δ = 194.6, 143.0, 139.7, 135.8, 131.5, 128.8, 128.4, 127.8, 127.2, 125.8, 124.9, 61.4, 49.3, 47.9, 46.9, 38.6, 12.6, 11.7. MS (ESI): m/z = 422 [M+1]+. HRMS (ESI): m/z [M+1]+ calcd for C20H24NS2Se: 422.0515; found: 422.0511.
    • 16a Muangkaew C. Katrun P. Kanchanarugee P. Pohmakotr M. Reutrakul V. Soorukram D. Jaipetch T. Kuhakarn C. Tetrahedron 2013; 69: 8847
    • 16b Huang Z.-Z. Huang X. Huang Y.-Z. J. Chem. Soc., Perkin Trans. 1 1995; 95
    • 16c Toshimitsu A. Uemura S. Okano M. J. Chem. Soc., Chem. Commun. 1982; 87