Synlett 2018; 29(14): 1875-1880
DOI: 10.1055/s-0037-1609558
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Arylation of Aromatic Amides Directed by a [4-Chloro-2-(1H-pyrazol-1-yl)phenyl]amine Auxiliary

Ya-Hua Hu ◊
School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Email: jyf@ecust.edu.cn
,
Zhi Xu ◊
School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Email: jyf@ecust.edu.cn
,
Ling-Yan Shao
School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Email: jyf@ecust.edu.cn
,
Ya-Fei Ji*
School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Email: jyf@ecust.edu.cn
› Author Affiliations

We gratefully thank the National Natural Science Foundation of China (Project Nos. 21476074 and 21676088) for financial support.
Further Information

Publication History

Received: 28 April 2018

Accepted after revision: 14 June 2018

Publication Date:
20 July 2018 (online)


Ya-Hua Hu and Zhi Xu are equal first authors.

Abstract

A palladium-catalyzed ortho-arylation of aromatic amides ­directed by [4-chloro-2-(1H-pyrazol-1-yl)phenyl]amine as a bidentate auxiliary has been established. The reaction is characterized by normal working conditions, a broad substrate scope, and a wide functional-group tolerance. In particular, the protocol is compatible with highly sterically demanding ortho-substituted anilides and aryl iodide partners, with good yields.

Supporting Information

 
  • References and Notes

    • 1a Kakiuchi F. Murai S. Acc. Chem. Res. 2002; 35: 826
    • 1b Godula K. Sames D. Science 2006; 312: 67
    • 1c Chen X. Engle KM. Wang D.-H. Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 1d Lyons TM. Sanford MS. Chem. Rev. 2010; 110: 1147
    • 1e Zhou M. Crabtree RH. Chem. Soc. Rev. 2011; 40: 1875
    • 1f McMurray L. O’Hara F. Sanford MS. Chem. Soc. Rev. 2011; 40: 1885
    • 1g Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 1h Li B.-J. Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588
    • 1i Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 1j Roizen J. Harvey ME. Du Bois J. Acc. Chem. Res. 2012; 45: 911
    • 1k Rouquet G. Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 1l Zheng C. You S.-L. RSC Adv. 2014; 4: 6173
    • 1m Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 1n Ros A. Fernández R. Lassaletta JM. Chem. Soc. Rev. 2014; 43: 3229
    • 1o Zhang F. Spring DR. Chem. Soc. Rev. 2014; 43: 6906
    • 1p Yeh C.-H. Chen W.-C. Parthasarathy P. Hong Y.-C. Shin C.-H. Cheng C.-H. Org. Biomol. Chem. 2014; 12: 9105
    • 1q Topczewski JJ. Sanford MS. Chem. Sci. 2015; 6: 70
    • 1r Guo X.-X. Gu D.-W. Wu Z. Zhang W. Chem. Rev. 2015; 115: 1622
    • 1s Yang G. Butt N. Zhang W. Chin. J. Catal. 2016; 37: 98
    • 1t Nareddy P. Jordan F. Szostak M. ACS Catal. 2017; 7: 5721

      For selected heteroarene-directed arylations, see:
    • 2a Ackermann L. Org. Lett. 2005; 7: 3123
    • 2b Zaitsev VG. Shabashov D. Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
    • 2c Ding Q. Ji H. Wang D. Lin Y. Yu W. Peng Y. J. Organomet. Chem. 2012; 711: 62
    • 2d Stephens DE. Lakey-Beitia J. Atesin AC. Ateşin TA. Chavez G. Arman HD. Larionov OV. ACS Catal. 2015; 5: 167
    • 2e Zha G.-F. Qin H.-L. Kantchev EA. B. RSC Adv. 2016; 6: 30875

      For selected functional groups directed arylation:
    • 3a Kakiuchi F. Kan S. Igi K. Chatani N. Murai S. J. Am. Chem. Soc. 2003; 125: 1698
    • 3b Wang D.-H. Wasa M. Giri R. Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 7190
    • 3c Shabashov D. Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965
    • 3d Dai H.-X. Stepan AF. Plummer MS. Zhang Y.-H. Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 7222
    • 3e Li W. Xu Z. Sun P. Jiang X. Fang M. Org. Lett. 2011; 13: 1286
    • 3f Yao J. Yu M. Zhang Y. Adv. Synth. Catal. 2012; 354: 3205
    • 3g Corbet M. De Campo F. Angew. Chem. Int. Ed. 2013; 52: 9896
    • 3h Senthilkumar N. Parthasarathy K. Gandeepan P. Cheng C.-H. Chem. Asian J. 2013; 8: 2175
    • 3i Zhang J.-C. Shi J.-L. Wang B.-Q. Hu P. Zhao K.-Q. Shi Z.-J. Chem. Asian J. 2015; 10: 840
    • 3j Daugulis O. Roane J. Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 3k Rit RK. Yadav MR. Ghosh K. Sahoo AK. Tetrahedron 2015; 71: 4450
    • 3l Reddy C. Bisht N. Parella R. Babu SA. J. Org. Chem. 2016; 81: 12143
    • 3m Zhao S. Liu B. Zhan B.-B. Zhang W.-D. Shi B.-F. Org. Lett. 2016; 18: 4586
    • 3n Nguyen TT. Daugulis O. Chem. Commun. 2017; 53: 4609
    • 3o Zavesky BP. Bartlett SL. Johnson JS. Org. Lett. 2017; 19: 2126
    • 4a Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
    • 4b Zhao D. You J. Hu C. Chem. Eur. J. 2011; 17: 5466
    • 4c Mehta VP. Punji B. RSC Adv. 2013; 3: 11957
    • 4d Chan TL. Wu Y. Choy PY. Kwong FY. Chem. Eur. J. 2013; 19: 15802
    • 4e Yamaguchi J. Muto K. Itami K. Eur. J. Org. Chem. 2013; 19
    • 4f Li B. Dixneuf H. Chem. Soc. Rev. 2013; 42: 5744
    • 4g Grzybowski M. Skonieczny K. Butenschön H. Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
    • 4h Aldemir H. Richarz R. Gulder TA. M. Angew. Chem. Int. Ed. 2014; 53: 8286
    • 4i García-López J.-A. Greaney MF. Chem. Soc. Rev. 2016; 45: 6766
    • 4j Leroux FR. Panossian A. Augros D. C. R. Chim. 2017; 20: 682
    • 4k Zhao K. Shen L. Shen Z.-L. Loh T.-P. Chem. Soc. Rev. 2017; 46: 586
    • 4l Yang Y. Lan J. You J. Chem. Rev. 2017; 117: 8787
    • 4m Perry GJ. P. Larrosa I. Eur. J. Org. Chem. 2017; 3517
    • 5a Carey JS. Laffan D. Thomson C. Williams MT. Org. Biomol. Chem. 2006; 4: 2337
    • 5b Murphy AR. Fréchet JM. J. Chem. Rev. 2007; 107: 1066
    • 5c Hughes RA. Moody CJ. Angew. Chem. Int. Ed. 2007; 46: 7930
    • 5d Surry DS. Buchwald SL. Angew. Chem. 2008; 120: 6438
    • 5e Dolle RE. Le Bourdonnec B. Worm K. Morales GA. Thomas CJ. Zhang W. J. Comb. Chem. 2010; 12: 765
    • 5f Bringmann G. Gulder T. Gulder TM. Breuning M. Chem. Rev. 2011; 111: 563
    • 5g Ding Z. Osminski WG. Ren H. Wulff W. Org. Process Res. Dev. 2011; 15: 1089
    • 5h Sengupta S. Mehta G. Tetrahedron Lett. 2017; 58: 1357
    • 6a Daugulis O. Do H.-Q. Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 6b Aihara Y. Chatani N. Chem. Sci. 2013; 4: 664
    • 6c Nadres ET. Santos GI. F. Shabashov D. Daugulis O. J. Org. Chem. 2013; 78: 9689
    • 6d Huang L. Li Q. Wang C. Qi C. J. Org. Chem. 2013; 78: 3030
    • 6e Yokota A. Aihara Y. Chatani N. J. Org. Chem. 2014; 79: 11922
  • 8 Shen Y. Lee W.-CC. Gutierrez DA. Li JJ. J. Org. Chem. 2017; 82: 11620
  • 9 Products 3 and 4; General Procedure A mixture of substrate 1 (0.3 mmol), (het)aryl iodide 2 (0.9 mmol), Pd(OAc)2 (6.7 mg, 10 mol%), and Ag3PO4 (125.6 mg, 1.0 equiv) in p-xylene (2.5 mL) was stirred and then heated at 120 °C for 12 h. Upon completion of the reaction, the mixture was cooled to r.t. and filtered through a pad of Celite. The filtrate was washed with EtOAc (3 × 15 mL) and the organic layers were combined, dried (MgSO4), and concentrated in vacuo to provide a crude product that was purified by column chromatography [silica gel, PE–EtOAc (40:1)] to give the desired product 3 or 4. N-[4-Chloro-2-(1H-pyrazol-1-yl)phenyl]-4′-methoxy-3-methylbiphenyl-2-carboxamide (3f) Yellow oil; yield: 106 mg (85%). 1H NMR (400 MHz, CDCl3): δ = 9.94 (s, 1 H), 8.43 (d, J = 8.8 Hz, 1 H), 7.57 (d, J = 1.6 Hz, 1 H), 7.54 (d, J = 2.8 Hz, 1 H), 7.33 (t, J = 7.6 Hz, 1 H), 7.30 (dd, J 1 = 8.0, J 2 = 2.4 Hz, 1 H), 7.19–7.23 (m, 3 H), 7.19 (d, J = 4.0 Hz, 1 H), 7.17 (d, J = 8.4 Hz, 1 H), 6.70 (d, J = 8.8 Hz, 2 H), 6.39 (t, J = 2.4 Hz, 1 H), 3.73 (s, 3 H), 2.40 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 168.5, 158.7, 141.5 (2 C), 138.9, 136.4, 135.5, 132.5, 130.0, 129.9, 129.8, 129.4 (2 C), 129.2, 129.1, 127.7, 127.4, 124.4, 122.5, 113.7 (2 C), 107.5, 55.2, 19.5. HRMS (EI): m/z [M+] calcd for C24H20ClN3O2: 417.1244; found: 417.1243.
    • 10a Ren Z. Mo F. Dong G. J. Am. Chem. Soc. 2012; 134: 16991
    • 10b Ren Z. Schulz JE. Dong G. Org. Lett. 2015; 17: 2696
    • 10c Shao L.-Y. Li C. Guo Y. Yu K.-K. Zhao F.-Y. Qiao W.-L. Liu H.-W. Liao D.-H. Ji Y.-F. RSC Adv. 2016; 6: 78875
    • 10d Zhu R.-Y. Liu L.-Y. Park HS. Hong K. Wu Y. Senanayake CH. Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 16080
    • 11a Zhao Y. He G. Nack WA. Chen G. Org. Lett. 2012; 14: 2948
    • 11b Nishino M. Hirano K. Satoh T. Miura M. Angew. Chem. Int. Ed. 2013; 52: 4457
    • 11c Gu Q. Al Mamari H. Graczyk K. Diers E. Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 3868
    • 12a Shang R. Ilies L. Matsumoto A. Nakamura E. J. Am. Chem. Soc. 2013; 135: 6030
    • 12b Aihara Y. Chatani N. J. Am. Chem. Soc. 2014; 136: 898
    • 12c Iyanaga M. Aihar Y. Chatani N. J. Org. Chem. 2014; 79: 11933
  • 13 CCDC 1815994 contains the supplementary crystallographic data for compound 4p. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 14a Lapointe D. Fagnou K. Chem. Lett. 2010; 39: 1118
    • 14b Balcells D. Clot E. Eisenstein O. Chem. Rev. 2010; 110: 749
    • 14c Musaev DG. Figg TM. Kaledin AL. Chem. Soc. Rev. 2014; 43: 5009
    • 15a Weibel J.-M. Blanc A. Pale P. Chem. Rev. 2008; 108: 3149
    • 15b Arroniz C. Denis JG. Ironmonger A. Rassias G. Larrosa I. Chem. Sci. 2014; 5: 3509