Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(10): 1340-1345
DOI: 10.1055/s-0037-1609443
DOI: 10.1055/s-0037-1609443
letter
Visible-Light-Promoted Difunctionalization of Olefins Leading to α-Thiocyanato Ketones
Authors
This work was supported by the Opening Project of Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region (No. 2017YSHXZD04).
Further Information
Publication History
Received: 07 January 2018
Accepted after revision: 08 March 2018
Publication Date:
23 April 2018 (online)

Abstract
A simple and convenient visible-light-induced difunctionalization of alkenes with ammonium thiocyanate and dioxygen has been developed at room temperature. A series of α-thiocyanato ketones could be easily and efficiently obtained in moderate to good yields through the formation of C–S and C=O bonds simply by using nontoxic and inexpensive Na2-Eosin Y as a photocatalyst.
Key words
visible-light catalysis - difunctionalization - alkenes - ammonium thiocyanate - α-thiocyanato ketonesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609443.
- Supporting Information (PDF)
-
References and Notes
- 1a Mehta RG. Liu J. Constantinou A. Thomas CF. Hawthorne M. You M. Gerhüser C. Pezzuto JM. Moon RC. Moriarty RM. Carcinogenesis 1995; 16: 399
- 1b Yasman Y. Edrada RA. Wray V. Proksch P. J. Nat. Prod. 2003; 66: 1512
- 1c Elhalem E. Bailey BN. Docampo R. Ujváry I. Szajnman SH. Rodriguez JB. J. Med. Chem. 2002; 45: 3984
- 1d Kokorekin VA. Terent’ev AO. Ramenskaya GV. Grammatikova NE. Rodionova GM. Ilovaiskii AI. Pharm. Chem. J. 2013; 47: 422
- 1e Promkatkaew M. Gleeson D. Hannongbua S. Gleeson MP. Chem. Res. Toxicol. 2014; 27: 51
- 1f Roberts DW. Aptula AO. Chem. Res. Toxicol. 2014; 27: 240
- 2a Still IW. J. Toste FD. J. Org. Chem. 1996; 61: 7677
- 2b Kianmehr E. Ghanbari M. Niri MN. Faramarzi R. J. Comb. Chem. 2010; 12: 41
- 2c Toste FD. LaRonde F. Still IW. J. Tetrahedron Lett. 1995; 17: 2949
- 2d Erian AW. Sherif SM. Tetrahedron 1999; 55: 7957
- 2e Demko ZP. Sharpless KB. Org. Lett. 2001; 3: 4091
- 2f Wei ZL. Kozikowski AP. J. Org. Chem. 2003; 68: 9116
- 2g Ke F. Qu Y.-Y. Jiang Z.-Q. Li Z.-K. Wu D. Zhou X.-G. Org. Lett. 2011; 13: 454
- 2h Jansa P. Cechova L. Dracinsky M. Janeba Z. RSC Adv. 2013; 3: 2650
- 3a Wood JL. Organic Reactions . Vol. 3. Adams R. Chap. 6 John Wiley & Sons; New York: 1946
- 3b Metzer JB. Comprehensive Heterocyclic Chemistry . Vol. 6. Katritzky A. Pergamon; Oxford: 1984: 235
- 3c Yadav LD. S. Patel R. Rai VK. Srivastava VP. Tetrahedron Lett. 2007; 48: 7793
- 4 Kawamura S. Izumi K. Satoh J. Sanemitsu Y. Hamada T. Shibata H. Satoh R. Eur. Patent Appl. E. P. 446802, 1991
- 5 Dittmer DC. Comprehensive Hetrocyclic Chemistry . Vol. 7. Katritzky A. Pergamon; Oxford: 1984: 178
- 6 Prakash O. Saini N. Synth. Commun. 1993; 23: 1455
- 7a Yadav JS. Reddy BV. S. Reddy UV. S. Krishna AD. Tetrahedron Lett. 2007; 48: 5243
- 7b Chaskar AC. Yadav AA. Langi BP. Murugappan A. Shah C. Synth. Commun. 2010; 40: 2850
- 7c Yadav JS. Reddy BV. S. Reddy UV. S. Chary DN. Synthesis 2008; 8: 1283
- 7d Reddy BV. S. Reddy SM. S. Madan C. Tetrahedron Lett. 2011; 52: 1432
- 7e Zhang G.-F. Wang Y. Ding C.-Y. Wen X. Wu J. Faming Zhuanli Shenqing 2012 CN 102320909A
- 8a Prakash O. Kaur H. Batra H. Singh SP. Moriarty RA. J. Org. Chem. 2001; 66: 2019
- 8b Prakash O. Rani N. Sharma V. Moriarty RM. Synlett 1997; 1255
- 8c Iranpoor N. Firouzabadi H. Shaterian H. Synlett 2000; 65
- 8d Tanabe Y. Makita T. Mori K. Chem. Lett. 1994; 2275
- 9a Nair V. Nair LG. George TG. Augustine A. Tetrahedron 2000; 56: 7607
- 9b Badri R. Gorjizadeh M. Synth. Commun. 2012; 42: 2058
- 9c Liu K. Li D.-P. Zhou S.-F. Pan X.-Q. Shoberu A. Zou J.-P. Tetrahedron 2015; 71: 4031
- 10a Nicewicz DA. MacMillan DW. C. Science 2008; 322: 77
- 10b Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 10c Yoon TP. Ischay MA. Du J. Nat. Chem. 2010; 2: 527
- 10d Schultz DM. Yoon TP. Science 2014; 343: 6174
- 10e Shi L. Xia W. Chem. Soc. Rev. 2012; 41: 7687
- 10f Xuan J. Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
- 10g Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
- 10h Skubi KL. Blum TR. Yoon TP. Chem. Rev. 2016; 116: 10035
- 10i Romero NA. Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 11a Shi Q. Li P. Zhu X. Wang L. Green Chem. 2016; 18: 4916
- 11b Zhang L. Yi H. Wang J. Lei A. Green Chem. 2016; 18: 5122
- 11c Ghogare AA. Greer A. Chem. Rev. 2016; 116: 9994
- 11d Shyam PK. Jang H.-Y. J. Org. Chem. 2017; 82: 1761
- 11e Hu X. Zhang G. Bu F. Lei A. ACS Catal. 2017; 7: 1432
- 11f Wei W. Cui H. Yang D. Yue H. He C. Zhang Y. Wang H. Green Chem. 2017; 19: 5608
- 11g Li X. Fang X. Zhuang S. Liu P. Sun P. Org. Lett. 2017; 19: 3580
- 12a Zou Y.-Q. Chen J.-R. Liu X.-P. Lu L.-Q. Davis RL. Jørgensen KA. Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 784
- 12b Ravelli D. Fagnoni M. Albini A. Chem. Soc. Rev. 2013; 42: 97
- 12c Keshari T. Yadav VK. Srivastava VP. Yadav LD. S. Green Chem. 2014; 16: 3986
- 12d Shi Q. Li P. Zhu X. Wang L. Green Chem. 2016; 18: 4916
- 12e Zhang L. Yi H. Wang J. Lei A. Green Chem. 2016; 18: 5122
- 12f Cui H. Wei W. Yang D. Zhang Y. Zhao H. Wang L. Wang H. Green Chem. 2017; 19: 3520
- 12g Shyam PK. Jang H.-Y. J. Org. Chem. 2017; 82: 1761
- 13a Mitra S. Ghosh M. Mishra S. Hajra A. J. Org. Chem. 2015; 80: 8275
- 13b Fan W. Yang Q. Xu F. Li P. J. Org. Chem. 2014; 79: 10588
- 13c Yadav AK. Yadav LD. S. Green Chem. 2015; 17: 3515
- 13d Hari DP. Konig B. Chem. Commun. 2014; 50: 6688
- 13e Kundu D. Ahammed S. Ranu BC. Org. Lett. 2014; 16: 1814
- 13f Zhang G. Zhang L. Yi H. Luo Y. Qi X. Tung C.-H. Wu L.-Z. Lei A. Chem. Commun. 2016; 52: 10407
- 13g Hu B. Li Y. Dong W. Ren K. Xie X. Wan J. Zhang Z. Chem. Commun. 2016; 52: 3709
- 13h Cao S. Zhong S. Xin L. Wan J.-P. Wen C. ChemCatChem 2015; 7: 1478
- 13i Pan X.-Q. Lei M.-Y. Zou J.-P. Zhang W. Tetrahedron Lett. 2009; 50: 347
- 14a Bu M. Lu G. Cai C. Catal. Sci. Technol. 2016; 6: 413
- 14b Yi H. Bian C. Hu X. Niu L. Lei A. Chem. Commun. 2015; 51: 14046
- 14c Lu Q. Zhang J. Zhao G. Qi Y. Wang H. Lei A. J. Am. Chem. Soc. 2013; 135: 11481
- 14d Huang M.-H. Zhu Y.-L. Hao W.-J. Wang A.-F. Wang D.-C. Liu F. Wei P. Tu S.-J. Jiang B. Adv. Synth. Catal. 2017; 359: 2229
- 15a Wei W. Ji J.-X. Angew. Chem. Int. Ed. 2011; 50: 9097
- 15b Zhang G.-Y. Li C.-K. Li D.-P. Zeng R.-S. Shoberu A. Zou J.-P. Tetrahedron 2016; 72: 2972
- 15c Wei W. Liu C. Yang D. Wen J. You J. Suo Y. Wang H. Chem. Commun. 2013; 49: 10239
- 15d Wei W. Wen J. Yang D. Wu M. You J. Wang H. Org. Biomol. Chem. 2014; 12: 7678
- 16 Preparation of 1-Phenyl-2-thiocyanatoethanone (4a) To a solution of NH4SCN (2) (30.4 mg, 0.4 mmol) and Na2-EosinY (2.8 mg, 0.004 mmol, 2 mol%) in CH3CN (5 mL) was added alkene 1a (20.8 mg, 0.2 mmol). The reaction mixture was stirred under the irradiation of 3W blue LED under an oxygen atmosphere at r.t. for 5 h. After completion of the reaction, the solution was concentrated under vacuum. The residue was purified by using a mixture of ethyl acetate and petroleum ether (1:10) as eluent to give the desired product 4a. Yield: 30 mg (79%). 1H NMR (CDCl3, 500 MHz, ppm): δ = 7.95 (d, J = 8.0 Hz, 2 H), 7.68 (t, J = 7.3 Hz, 1 H), 7.54 (t, J = 7.7 Hz, 2 H), 4.75 (s, 2 H). 13C NMR (CDCl3, 125 MHz, ppm): δ = 190.8, 134.8, 134.0, 129.2, 128.5, 111.9, 43.0. HRMS: m/z [M + Na]+ calcd for C9H7NOSNa: 200.0146; found 200.0149.
Selected examples:
Selected examples: