Synthesis 2018; 50(10): 2058-2066
DOI: 10.1055/s-0037-1609343
paper
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Allylation of Linear and Chiral β-Amino-α-Hydroxy Aldehydes: Total Syntheses of Tetraacetyl d-lyxo-, d-ribo-, and d-arabino-Phytosphingosines

In-Soo Myeong
School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea   Email: whham@skku.edu
,
Jin-Seok Kim
School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea   Email: whham@skku.edu
,
Muyng-Gyu Park
School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea   Email: whham@skku.edu
,
Hwan-Hee Jeon
School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea   Email: whham@skku.edu
,
Changyoung Jung
School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea   Email: whham@skku.edu
,
Yong-Taek Lee
School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea   Email: whham@skku.edu
,
Won-Hun Ham*
School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea   Email: whham@skku.edu
› Author Affiliations
Further Information

Publication History

Received: 02 February 2018

Accepted after revision: 20 February 2018

Publication Date:
27 March 2018 (online)


Abstract

The stereoselective allylations of β-amino-α-hydroxy aldehydes­ are described. Several Lewis acids (BF3·OEt2, SnCl4, TiCl4, ZnCl, and MgBr2·OEt2) were utilized in the allylations. The allylation of anti-β-NHCbz-α-OTBS substrate mediated by SnCl4 afforded the syn-selective­ product, while its allylation mediated by BF3·OEt2 afforded the anti-selective product. The allylation of syn-β-NHCbz-α-OTBS mediated by SnCl4 afforded the anti-selective product. The mechanism involves the chelation between the amido group and aldehyde oxygen by SnCl4, and the Felkin–Anh model by BF3·OEt2. The resulting allylation products were used for the total syntheses of tetraacetyl d-lyxo-, d-ribo-, and d-arabino-phytosphingosines.

Supporting Information

 
  • References

    • 1a Jurczak J. Golebiowski A. Chem. Rev. 1989; 89: 149
    • 1b Reetz MT. Angew. Chem., Int. Ed. Engl. 1991; 30: 1531
    • 1c Marshall JA. Chem. Rev. 1996; 96: 31
    • 1d Bergmeier SC. Tetrahedron 2000; 56: 2561
    • 1e Liang X. Andersch J. Bols M. J. Chem. Soc., Perkin Trans. 1 2001; 2136
    • 1f Hili R. Baktharaman S. Yudin AK. Eur. J. Org. Chem. 2008; 5201
    • 1g Karjalainen OK. Koskinen AM. Org. Biomol. Chem. 2012; 10: 4311
    • 1h Passiniemi M. Koskinen AM. Beilstein J. Org. Chem. 2013; 9: 2641
  • 2 Cram DJ. Elhafez FA. A. J. Am. Chem. Soc. 1952; 74: 5828
    • 3a Mengel A. Reiser O. Chem. Rev. 1999; 99: 1191
    • 3b Reetz MT. Angew. Chem., Int. Ed. Engl. 1984; 23: 556
    • 3c Reetz MT. Acc. Chem. Res. 1993; 26: 462
    • 3d Yamamoto Y. Asao N. Chem. Rev. 1993; 93: 2207
    • 3e Yus M. González-Gómez JC. Foubelo F. Chem. Rev. 2013; 113: 5595
  • 4 Gung BW. Org. React. 2004; 64: 1
  • 5 Dondoni A. Fantin G. Fogagnolo M. Medici A. J. Chem. Soc., Chem. Commun. 1988; 10
  • 6 Shimizu M. Wakioka I. Fujisawa T. Tetrahedron Lett. 1997; 38: 6027
  • 7 Ndakala AJ. Hashemzadeh M. So RC. Howell AR. Org. Lett. 2002; 4: 1719
  • 8 Wagner A. Mollath M. Tetrahedron Lett. 1993; 34: 619
    • 9a Ghosh AK. Bischoff A. Cappiello J. Org. Lett. 2001; 3: 2677
    • 9b Ghosh AK. Bischoff A. Cappiello J. Eur. J. Org. Chem. 2003; 821
  • 10 Ginesta X. Pastó M. Pericas MA. Riera A. Org. Lett. 2003; 5: 3001
  • 11 Righi G. Ciambrone S. D’Achille C. Leonelli A. Bonini C. Tetrahedron 2006; 62: 11821
  • 12 Abraham E. Candela-Lena JI. Davies SG. Georgiou M. Nicholson RL. Roberts PM. Russell AJ. Sánchez-Fernández EM. Smith AD. Thomson JE. Tetrahedron: Asymmetry 2007; 18: 2510
    • 13a Murakami T. Taguchi K. Tetrahedron 1999; 55: 989
    • 13b Abraham E. Brock EA. Candela-Lena JI. Davies SG. Georgiou M. Nicholson RL. Perkins JH. Roberts PM. Russell AJ. Sánchez-Fernández EM. Org. Biomol. Chem. 2008; 6: 1665
    • 14a Génisson Y. Lamandé L. Salma Y. Andrieu-Abadie N. André C. Baltas M. Tetrahedron: Asymmetry 2007; 18: 857
    • 14b Salma Y. Ballereau S. Maaliki C. Ladeira S. Andrieu-Abadie N. Génisson Y. Org. Biomol. Chem. 2010; 8: 3227
    • 15a Singh S. Han H. Tetrahedron Lett. 2004; 45: 6349
    • 15b Singh OV. Kampf DJ. Han H. Tetrahedron Lett. 2004; 45: 7239
    • 15c Chikkanna D. Singh OV. Kong SB. Han H. Tetrahedron Lett. 2005; 46: 8865
  • 16 Busscher GF. Rutjes FP. van Delft FL. Tetrahedron Lett. 2004; 45: 3629
    • 17a Lee K.-Y. Kim Y.-H. Park M.-S. Oh C.-Y. Ham W.-H. J. Org. Chem. 1999; 64: 9450
    • 17b Jin T. Mu Y. Kim J.-S. Park S.-H. Jin X. Kang J.-C. Oh C.-Y. Ham W.-H. Synth. Commun. 2014; 44: 2401
    • 17c Myeong I.-S. Lee Y.-T. Lee S.-H. Jung C. Kim J.-S. Park S.-H. Kang J. Lee S.-J. Ye I.-H. Ham W.-H. Tetrahedron: Asymmetry 2017; 28: 1053
    • 18a Li Y.-L. Mao X.-H. Wu Y.-L. J. Chem. Soc., Perkin Trans. 1 1995; 1559
    • 18b Shirota O. Nakanishi K. Berova N. Tetrahedron 1999; 55: 13643
    • 18c Nakamura T. Shiozaki M. Tetrahedron Lett. 1999; 40: 9063
    • 18d Fernandes RA. Kumar P. Tetrahedron Lett. 2000; 41: 10309
    • 18e Nakamura T. Shiozaki M. Tetrahedron 2001; 57: 9087
    • 18f Lu X. Byun H.-S. Bittman R. J. Org. Chem. 2004; 69: 5433
    • 18g Cai Y. Ling C.-C. Bundle DR. Org. Biomol. Chem. 2006; 4: 1140
    • 18h Park J.-J. Lee JH. Li Q. Diaz K. Chang Y.-T. Chung S.-K. Bioorg. Chem. 2008; 36: 220
    • 18i Mu Y. Kim J.-Y. Jin X. Park S.-H. Joo J.-E. Ham W.-H. Synthesis 2012; 44: 2340
    • 18j Mridha M. Ma G. Palo-Nieto C. Afewerki S. Cordova A. Synthesis 2017; 49: 383
    • 19a He L. Byun H.-S. Bittman R. J. Org. Chem. 2000; 65: 7618
    • 19b Chiu H.-Y. Tzou D.-LM. Patkar LN. Lin C.-C. J. Org. Chem. 2003; 68: 5788
    • 19c Lombardo M. Capdevila MG. Pasi F. Trombini C. Org. Lett. 2006; 8: 3303
    • 19d Llaveria J. Díaz Y. Matheu MI. Castillón S. Org. Lett. 2008; 11: 205
    • 19e Liu Z. Byun H.-S. Bittman R. J. Org. Chem. 2010; 75: 4356
    • 19f Lee YM. Baek DJ. Lee S. Kim D. Kim S. J. Org. Chem. 2010; 76: 408
    • 19g Perali RS. Mandava S. Chalapala S. Tetrahedron 2011; 67: 9283
    • 19h Devi TJ. Saikia B. Barua NC. Tetrahedron 2013; 69: 3817
    • 19i Yen Y.-F. Sawant R. Luo S.-Y. Synthesis 2013; 45: 511
    • 19j Calder ED. Zaed AM. Sutherland A. J. Org. Chem. 2013; 78: 7223
    • 19k Chun JS. Hong SM. Jeon TH. Park SJ. Son HP. Jung JM. Choi YJ. Kim IS. Jung YH. Tetrahedron 2016; 72: 8550
    • 20a Azuma H. Tamagaki S. Ogino K. J. Org. Chem. 2000; 65: 3538
    • 20b Enders D. Paleček J. Grondal C. Chem. Commun. 2006; 655
    • 20c Mormeneo D. Casas J. Llebaria A. Delgado A. Org. Biomol. Chem. 2007; 5: 3769
    • 20d Kim S. Lee N. Lee S. Lee T. Lee YM. J. Org. Chem. 2008; 73: 1379
    • 20e Mu Y. Jin T. Kim GW. Kim JS. Kim SS. Tian YS. Oh CY. Ham WH. Eur. J. Org. Chem. 2012; 2614
    • 20f Haghshenas P. Gravel M. Org. Lett. 2016; 18: 4518
    • 21a Riethmüller J. Riehle A. Grassmé H. Gulbins E. Biochim. Biophys. Acta 2006; 1758: 2139
    • 21b Snook C. Jones J. Hannun Y. Biochim. Biophys. Acta 2006; 1761: 927
  • 22 Zhou S. Zhou H. Walian PJ. Jap BK. Biochemistry 2007; 46: 2553
  • 23 Summers SA. Nelson DH. Diabetes 2005; 54: 591
  • 24 Modrak DE. Gold DV. Goldenberg DM. Mol. Cancer Ther. 2006; 5: 200